
THE JOURNAL OF CHEMICAL PHYSICS 134, 024105 (2011)

A new approach to decoherence and momentum rescaling
in the surface hopping algorithm

Joseph E. Subotnik1,a) and Neil Shenvi2,b)

1Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
2Department of Chemistry, Duke University, Durham, North Carolina 27708, USA

(Received 14 July 2010; accepted 8 October 2010; published online 11 January 2011)

As originally proposed, the fewest switches surface hopping (FSSH) algorithm does not allow for
decoherence between wavefunction amplitudes on different adiabatic surfaces. In this paper, we pro-
pose an inexpensive correction to standard FSSH dynamics wherein we explicitly model the de-
coherence of nuclear wave packets on distinct electronic surfaces. Our augmented fewest switches
surface hopping approach is conceptually simple and, thus far, it has allowed us to capture several
key features of the exact quantum results. Two points in particular merit attention. First, we obtain
the correct branching ratios when a quantum particle passes through more than one region of nona-
diabatic coupling. Second, our formalism provides a new and natural approach for rescaling nuclear
momenta after a surface hop. Both of these features should become increasingly important as surface
hopping schemes are applied to higher-dimensional problems. © 2011 American Institute of Physics.
[doi:10.1063/1.3506779]

I. INTRODUCTION: NONADIABATIC DYNAMICS AND
THE FEWEST SWITCHES SURFACE HOPPING
ALGORITHM

As has been repeatedly emphasized in the literature1–3

there are physical situations in which the Born–Oppenheimer
(or adiabatic) approximation is not valid and an understand-
ing of nonadiabatic effects is crucial. In particular, in order
to correctly describe electron transfer,4–6 electronic excitation
transfer,7, 8 or any form of electronic relaxation,9, 10 one must
be able to model the coupling between nuclear motion and
electronic transitions.

Various methods have been devised for treating the feed-
back between the classical nuclear system and the quantum
mechanical electronic system. Ehrenfest dynamics is the sim-
plest and earliest approach.11, 12 Ehrenfest dynamics allows
for feedback between the quantum and classical subsystems
in an essentially mean-field way; the nuclei move on the av-
erage potential energy surface of the electronic subsystem.
Unfortunately, the mean-field character of Ehrenfest dynam-
ics means that in the asymptotic limit, the forces experienced
by the nuclei do not correspond to any particular adiabatic
surface.

A major breakthrough came in 1990, with the intro-
duction of fewest switches surface hopping (FSSH).13, 14

Like Ehrenfest dynamics, FSSH allows feedback between
the classical and quantum subsystems. However, FSSH re-
quires that the nuclei always propagate on a particular
electronic adiabat with hops between adiabatic surfaces
(hence the name “surface hopping”). The benefit of surface
hopping is that the nuclei will always experience forces corre-
sponding to real electronic states in the asymptotic limit. Sur-
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face hopping has been successfully applied to a wide variety
of systems and is probably the most popular mixed quantum-
classical algorithm in use today.

Since the advent of surface hopping in the early 1990s,
numerous groups have attempted to fix the known shortcom-
ings of the FSSH algorithm. In particular, it has long been
known that FSSH suffers from the problem of overcoher-
ence: because the electronic wavefunction is propagated ex-
actly along a particular nuclear trajectory, components of the
electronic wavefunction propagating on multiple electronic
surfaces will always remain coherent. This can lead to spu-
rious results for long-time dynamics, especially if nuclei visit
more than one distinct region of derivative coupling.15 In
contrast, exact quantum calculations show that wave packets
propagating on multiple electronic surfaces should decohere;
that is, the wave packets should separate and eventually move
independently.

There exist numerous approaches in the literature for
overcoming this “decoherence problem” while retaining a
simple trajectory-based algorithm. First, there exist algo-
rithms which start from the quantum Liouville equation
(QLE) and derive equations of motion that yield trajec-
tories for the full nuclear-electronic density matrix.16–27

Second, the Meyer–Miller–Stock–Thoss12, 28, 29 formalism
overcomes the decoherence problem by showing that, if stan-
dard Ehrenfest trajectories are added together fully coherently
(with phase), the decoherence problem vanishes by phase in-
terference. Notably, the QLE and MMST approaches are both
rigorous nonadiabatic algorithms, one based on a Taylor ex-
pansion of a partial Wigner transform and the other on a semi-
classical treatment of path integrals. Third, several nonrigor-
ous techniques have been proposed for adding decoherence
directly and empirically to FSSH so as to deviate only min-
imally from the basic structure of the original surface hop-
ping algorithm.15, 30–45 All of these approaches can improve
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the coherence properties of semiclassical dynamics, though
sometimes at the cost of greater computational requirements
or substantially more complicated algorithms.

In this paper, we will introduce decoherence into the sur-
face hopping algorithm by means of a stochastic wavefunc-
tion collapse. Such an approach is not new and was indeed
followed by Truhlar, Rossky, Prezhdo, Schwartz, Hammes-
Schiffer, and co-workers.15, 31–35, 37–44 Furthermore, the ex-
pression we derive for the decoherence rate is similar to that
derived by Neria and Nitzan46 and Schwartz et al.32 What
is different in our approach is the fact that we will define
extra dynamical variables that will be propagated alongside
the classical position and momentum of each trajectory. The
decoherence rate used in our augmented fewest switches sur-
face hopping (A-FSSH) algorithm will be related to these
additional variables, which correspond roughly to the
position- and momentum-space widths of the real quantum
wavefunction. Furthermore, the propagation of these addi-
tional variables yields a natural formalism for momentum
rescaling following a surface hop. Our approach is loosely
based on the QLE formalism, and represents a small step to-
ward connecting FSSH dynamics with the QLE formalism in
Refs. 16–18.

An outline of this article is as follows. In the remainder of
this section, we define our formalism and provide some nec-
essary mathematical and algorithmic background. In Sec. A
2, we will derive the necessary theory for incorporating deco-
herence into the FSSH algorithm. In particular, in Sec. II A we
will compute concrete equations for expanding the Quantum
Liouville Equation around a surface hopping FSSH trajectory.
In Sec. II B, we will show that, if we make an instantaneous
frozen Gaussian ansatz for the nuclear wave packets, there
is a necessary decoherence correction to standard FSSH dy-
namics. In Sec. II C, we offer a step-by-step outline of the
A-FSSH dynamics routine that allows for decoherence, with
momentum rescaling in a new direction. In Sec. III, we test the
A-FSSH algorithm on four model 1D problems, each having
more than one region of derivative coupling;15 applications
to higher dimensions follow naturally and are in progress. In
Sec. IV, we analyze the effect of decoherence in our quantum-
classical dynamics, we compare A-FSSH to other nonadi-
abatic algorithms, and we discuss future directions for this
research.

A. Nomenclature and background

Consider a Hamiltonian having nuclear (R) and elec-
tronic (r ) degrees of freedom

Ĥ = V (r̂ , R) + Tnuc(R) ≡ V̂ (R) + Tnuc ≡ V̂ + Tnuc. (1)

For simplicity of notation, all indices for electronic degrees
of freedom will be subscripted Roman characters (e.g., i in
�i ); indices for nuclear degrees of freedom will be super-
scripted Greek characters (e.g., α in Rα). Nuclear vectors will
be denoted with �arrow notation, and nuclear operators will
be written in bold style; a ˆhat denotes an electronic operator.
This notation is nearly consistent with the notation in Refs. 47
and 48. We denote by m the mass of an electron and M the
mass of a nucleus.

The adiabatic basis functions for the electronic degrees
of freedom are defined by

V̂ ( �R)�i (r ; �R) = Ei ( �R)�i (r ; �R), (2)

the derivative couplings are

dα
jk( �R)

def=
〈
� j (r ; �R)| ∂

∂ Rα
�k(r ; �R)

〉
, (3)

and the forces are

Fα
jk( �R)

def= −
〈
� j (r ; �R)

∣∣∣∣∣ ∂ V̂

∂ Rα

∣∣∣∣∣�k(r ; �R)

〉
. (4)

The Hessian, or second derivative of V, will be denoted
K αβ

i j ( �R). Henceforward, we will restrict ourselves to the case
of two adiabatic surfaces, although our results should be ex-
tendible.

Consider now a trial electronic wavefunction of the form

|�el(t)〉 ≡
∑

j

c j (t)|� j (R(t))〉 (5)

defined in terms of adiabatic eigenstates (that in turn depend
on nuclear position �R(t)). The corresponding electronic den-
sity matrix is

σi j (R(t)) ≡ 〈�i (R(t))|�el〉〈�el |� j (R(t))〉 = ci c
∗
j . (6)

If we assume that the nuclei move classically, with momen-
tum �P(t), then Schrodinger’s equation yields

dσi j

dt
= − i

¯

∑
k

(
H el

ik ( �R)σk j − σik H el
k j ( �R)

)

−
∑

μ

Pμ

Mμ

∑
k

(
dμ

ik( �R)σk j − σikdμ

k j ( �R)
)
. (7)

According to Eq. (7), if we know the position and momenta
of classical nuclei, propagating electronic dynamics is sim-
ple. Instead, the difficulty lies in propagating the classical dy-
namics, i.e., how to incorporate feedback from the electronic
degrees of freedom.

B. The FSSH algorithm and frozen Gaussian models
for decoherence

In order to model the nonadiabatic dynamics of heavy nu-
clei and light electrons semiclassically, we will work closely
with the FSSH method.13, 14 The FSSH algorithm dictates that
we propagate nuclear dynamics along one adiabatic surface
at a time. The instantaneous hopping rate between surfaces is
the smallest rate possible such that, for a swarm of particles,
the fraction of particles moving along surface k matches the
instantaneous electron population σkk , which is propagated
independently. A hop is allowed or forbidden depending on
whether there is sufficient kinetic energy in the direction of
the nonadiabatic derivative coupling to allow for energy con-
servation. All details of the standard FSSH algorithm are pre-
sented clearly in Refs. 13 and 14 and will be reviewed in
Sec. II C.

The great successes of FSSH are (i) the ability to treat
bond making and breaking events by ensuring that the nu-
clei propagate on the correct asymptotic potential energy
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surfaces, and (ii) the ability to rigorously close all channels
that are not energetically accessible during inelastic scatter-
ing. As discussed above, the biggest failure of FSSH is its
inability to recognize when two wave packets on different adi-
abatic surfaces have moved apart (i.e., decohered), which can
lead to erroneous behavior.13

A few years ago, Schwartz and co-workers imple-
mented a new surface-hopping algorithm with decoherence
events,37, 38 titled mean-field with stochastic decoherence
(MF-SD), which we have found helpful. Their approach can
be derived as follows. If we consider the overlap between
frozen Gaussians in one dimension, g1, g2, with centers
(Ri , Pi ) and (R j , Pj ) in phase space, and widths aR = ¯/aP ,
the exact overlap between these wave packets is32, 46

〈gi |g j 〉 = exp

( −1

4a2
R

(Ri (t) − R j (t))
2

)

× exp

( −1

4a2
P

(Pi (t) − Pj (t))
2

)

× exp

(
i

2¯
(Ri (t) − R j (t))(Pi (t) + Pj (t))

)
. (8)

See Sec. II B for more details. If we allow the centers of frozen
Gaussian wave packets to move according to classical me-
chanics for short times (e.g., Ref. 49),

Ri (t) = Ri (0) + Pi (0)

M
t, (9)

Pi (t) = Pi (0) + Fi (0)t, (10)

then the absolute value of the overlap becomes

|〈gi |g j 〉| = exp

( −1

2Ma2
R

(Ri (0) − R j (0))(Pi (0) − Pj (0))t

)

× exp

( −1

2a2
P

(Pi (0) − Pj (0))(Fi (0) − Fj (0))t

)

(11)

= exp (−t/τFG) , (12)

1

τFG
≡ 1

2Ma2
R

(Ri (0) − R j (0))(Pi (0) − Pj (0))

+ 1

2a2
P

(Pi (0) − Pj (0))(Fi (0) − Fj (0)). (13)

Schwartz and co-workers argued that one should do
Ehrenfest dynamics, while always collapsing the electronic
wavefunction to an adiabatic state at a rate similar in spirit
to Eq. (13).37, 38 However, because the Schwartz algorithm
does not allow instantaneously for different (Ri , Pi ) versus
(R j , Pj )—i.e., the algorithm does not account for trajectory
history when deciding whether or not to collapse—one finds
1/τSchwartz is not exactly equal to 1/τFG (see Ref. 51). The
Schwartz algorithm also requires a width of the nuclear wave
packet, aR or aP .50 Recently, however, based on a heuristic
argument, we proposed that one could both (i) estimate the
position and momenta of distinct nuclear wave packets on

different electronic surfaces and (ii) avoid calculating a wave
packet width by extending Ehrenfest dynamics into phase
space.52

In this paper, our goal is to rigorously compute a decoher-
ence rate for the standard FSSH algorithm, and we will find
Eq. (13) to be very useful.

II. AUGMENTED FSSH AND DECOHERENCE

A. Moment expansions and FSSH trajectories

In order to derive a decoherence time relevant to surface-
hopping dynamics, we begin with the phase space formalism
of Bowler, Todorov, Horsfield, and co-workers,48, 53–55 and ex-
pand all quantum mechanical operators in moments around a
central trajectory. While the cited authors have previously ex-
panded all operators around mean-field (Ehrenfest) trajecto-
ries, we will now show that the same approach can be used
also for FSSH dynamics.

To start our derivation, suppose we are running stan-
dard FSSH dynamics and we generate trajectories in phase
space labeled ( �RSH (t), �PSH (t)). We assume that each trajec-
tory should roughly capture the positions of nuclei on multiple
electronic surfaces at time t and, for the moment, we ignore
the details of how these trajectories ( �RSH (t), �PSH (t)) are cal-
culated. Our goal is to “correct” these trajectories so that they
better match true quantum dynamics as specified by the quan-
tum Liouville equation

∂

∂t
ρ̂ = −i

¯
[Ĥ, ρ̂]. (14)

Here, ρ̂(t) = |�(t)〉〈�(t)| is the exact (nuclear plus elec-
tronic) density matrix at time t , and as discussed above, bold
face denotes a nuclear matrix and a ˆhat denotes an elec-
tronic matrix. By insisting that ( �RSH (t), �PSH (t)) should be
decent approximations to the centers of nuclear wave pack-
ets, computationally tractable approximations can be derived
by expanding all ρ̂, Ĥ in moments of δ �R = �R − �RSH (t) and
δ�P = �P − �PSH (t).

In particular, consider the reduced electronic operators

σ̂ (t) = TrN (ρ̂(t)) , (15)

δ R̂α(t) = TrN (δRα ρ̂(t)) = TrN
((

Rα(t) − Rα
SH (t)

)
ρ̂(t)

)
,

(16)

δ P̂α(t) = TrN (δPα ρ̂(t)) = TrN
((

Pα(t) − Pα
SH (t)

)
ρ̂(t)

)
.

(17)

If we are willing to ignore second- and higher-order terms δ R̂
and δ P̂ , we can find closed expressions for the equations of
motion of these variables.48, 53–55

1. An exactly diabatic representation

To see how we can obtain these quantities in practice,
let us focus on the reduced density matrix σ̂ in an exactly
diabatic electronic basis (|
i 〉). Because our approximation
is first order in the terms δ R̂ and δ P̂ , we will throw out all
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symmetrized moments which are second order or higher (i.e.,
(δ R̂)2, (δ R̂)2, (δ R̂δ P̂ + δ P̂δ R̂)). According to the definition
in Eq. (15),

σ jk(t) ≡ 〈
 j |TrN (ρ̂(t)) |
k〉 =
∫

d R′ 〈
 j R′ |ρ̂(t)|
k R′〉.

(18)

Applying Schrodinger’s equation, we find

d

dt
σ jk(t) = − i

¯

∫
d R′ 〈
 j R′|[Ĥ, ρ̂]|
k R′〉 (19)

= − i

¯

∫
d P ′ 〈
 j P ′|[T, ρ̂]|
k P ′〉

− i

¯

∫
d R′ 〈
 j R′|[V̂, ρ̂]|
k R′〉 (20)

= − i

¯

∫
d R′ 〈
 j R′|[V̂, ρ̂]|
k R′〉. (21)

Expanding the potential around �RSH (t)

V̂ = V̂ ( �RSH ) −
∑

α

F̂α( �RSH )δRα

+
∑
α,β

K̂ αβ( �RSH )δRαδRβ + · · · , (22)

and, for brevity, writing V̂ ≡ V̂ ( �RSH (t)), F̂ ≡ F̂( �RSH (t)), we
find

d

dt
σ jk(t) = − i

¯
[V̂ , σ̂ ] jk +

∑
α

i

¯
[F̂α, δ R̂α] jk + · · · .

(23)

Similar equations of motion for δ R̂ and δ P̂ are also de-
rived in the Appendix. We report the results here:

d

dt
δRα

jk = −i

¯
[V̂ , δ R̂α] jk + δPα

jk

Mα
+ · · · , (24)

δ F̂α = F̂α − Fα
SH (t), (25)

d

dt
δPα

jk = −i

¯
[V̂ , δ P̂α] jk + 1

2
(δ F̂ασ̂ + σ̂ δ F̂α) jk

−
∑

β

1

2
(K̂ αβδ R̂β + δ R̂β K̂ αβ) jk + · · · . (26)

Equations (23)–(26) were derived previously by
Horsfield et al. in Ref. 48 for the case of Ehrenfest dynamics.
We emphasize, however, that these same expansions work
equally well for any other choice of a classical trajectory
about which we expand, in particular the FSSH trajectories
treated here.

2. An adiabatic representation

Before concluding this subsection, we note that
Eqs. (23)–(26) can easily be extended from a diabatic to an
adiabatic electronic basis. In this case, one recognizes that the
adiabatic electronic states will depend on nuclear position and

one substitutes |
i 〉 → |�i (RSH (t)〉. Thus, in this basis, our
definition of σ is

σ jk(t) ≡ 〈� j ( �RSH (t))|TrN (ρ̂(t))|�k( �RSH (t))〉 (27)

and the corresponding equation of motion has one extra term
coming from the time dependence of �RSH (t) and the spatial
dependence of |�i 〉 and |� j 〉:

d

dt
σ jk(t) = − i

¯
[V̂ , σ̂ ] jk +

∑
α

i

¯
[F̂α, δ R̂α] jk

−
∑

α

Pα
SH

Mα
[d̂α, σ̂ ] jk + · · · . (28)

Similar equations for δ R̂ and δ P̂ are

d

dt
δRα

jk = −i

¯
[V̂ , δ R̂α] jk + δPα

jk

Mα

−
∑

β

Pβ

SH

Mβ
[d̂β, δ R̂α] jk + · · · , (29)

d

dt
δPα

jk = −i

¯
[V̂ , δ P̂α] jk + 1

2
(δ F̂ασ̂ + σ̂ δ F̂α) jk

−
∑

β

1

2
(K̂ αβδ R̂β + δ R̂β K̂ αβ) jk

−
∑

β

Pβ

SH

Mβ
[d̂β, δ P̂α] jk + · · · . (30)

While Eq. (30) is correct to first order in δ R̂, δ P̂ , unfortu-
nately it requires the second derivative of the potential, K αβ

i j ,
which is very expensive computationally. For this reason,
we will ignore all terms with K αβ

i j in Eq. (30), resulting in

d

dt
δPα

jk = −i

¯
[V̂ , δ P̂α] jk + 1

2
(δ F̂ασ̂ + σ̂ δ F̂α) jk

−
∑

β

Pβ

SH

Mβ
[d̂β, δ P̂α] jk + · · · . (31)

As a practical matter, we have found that for the numerical
problems in this paper, our results are effectively unchanged
by making this approximation. From a mathematical point
of view, in Eq. (30), the F̂ · σ̂ terms are zeroth-order cor-
rections and appear to dominate the first-order K̂ · δ R̂ terms.
As such, our hope is that Eq. (31) is a reasonable substitute
for Eq. (30) in the future. Note that, according to Eq. (31),
δ P̂α

12 is propagated “roughly” on 1
2 (Fα

11 + Fα
22), which fur-

ther coincides “roughly” with the approach of Kapral and
co-workers.16–18

B. A stable decoherence rate

According to the equations of motion for the reduced
density matrix σ̂ (t) in Eqs. (23) and (28), the reduced density
matrix propagates forward in time in a manner very similar
to the instantaneous electronic density matrix in semiclassi-
cal dynamics (σ̂ (R(t)) in Eq. (7)). In fact, comparing Eq. (28)
with Eq. (7), we see that the two expressions agree to zeroth
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order and nearly to first order. There is only one corrective
first-order term, which depends on the antisymmetric product
i
¯

[F̂, δ R̂].
In order to understand the role of this corrective term,

consider the simplest case, namely, when we are operating
in a region of zero derivative coupling, F12 = d12 = 0. In this
case, working in an adiabatic basis (with V̂ diagonal), we have
according to Eq. (28)
d

dt
σ12(t) = − i

¯
(V11 − V22) σ12 +

∑
α

i

¯

(
Fα

11 − Fα
22

)
δRα

12.

(32)

Based on this result, the corrective term in Eq. (32) leads
to a putative decoherence of the semiclassical wavefunction
via decay of |σ12|2

1

τd
= −

d

dt
|σ12(t)|

|σ12(t)|

= −
d

dt
|σ12(t)|2

2 |σ12(t)|2

= Im
∑

α

((
Fα

11 − Fα
22

)
δRα

12

¯σ12

)
. (33)

Although the expression in Eq. (33) is exact (in the limit of
zero derivative coupling), it is not stable because of the σ12

in the denominator. More specifically, if σ12 is near zero and
δR12 does not cancel this term exactly, we will obtain an in-
finite decoherence rate. Moreover, finite precision in machine
algebra can also lead to noise in the relative phase between
σ12 and δR12, and thus also a potentially chaotic estimate of
a decoherence rate (since we only take the imaginary part of
their ratio). For these reasons, Eq. (33) is not optimal.

1. Approximation #1: Invoking a Gaussian ansatz

Beyond Eq. (33), a better expression for the decoher-
ence rate can be found using a Gaussian approximation for
the instantaneous wavefunction at time t , |�(t)〉, following
the work of Schwartz, Rossky, and co-workers (see Sec. I B).
Mathematically, we assume that

〈�r , �R|�(t)〉 ≈ c1g1( �R)�1(�r ; �R) + c2g2( �R)�2(�r ; �R), (34)

where

gi ( �R) ≡ 〈 �R|gi ( �Ri (t), �Pi (t))〉

≡
∏
α

(
1

πa2
Rα

)1/4

exp

(
−(Rα − Rα

i (t)
)2

2a2
Rα

)

× exp

(
i

¯
Pα

i (t)
(
Rα − Rα

i (t)
))

, (35)

gi ( �P) ≡ 〈 �P|gi ( �Ri (t), �Pi (t))〉

≡
∏
α

(
1

πa2
Pα

)1/4

exp

(
−(Pα − Pα

i (t)
)2

2a2
Pα

)

× exp

(
− i

¯
Pα Rα

i (t)

)
. (36)

Here g1, g2 are a set of normalized Gaussian wave packets
with centers ( �R1(t), �P1(t)) and ( �R2(t), �P2(t)) in phase space,
and widths �aR and �aP . Gaussian wave packets by definition
satisfy minimal uncertainty so that aPα = ¯/aRα and the cen-
ters of the Gaussian wave packets are chosen as:

Rα
i ≡ Rα

i i ≡ Rα
SH (t) + δRα

i i

σi i
, (37)

Pα
i ≡ Pα

i i ≡ Pα
SH (t) + δPα

i i

σi i
. (38)

Using Eqs. (34)–(36) and ρ̂(t) = |�(t)〉〈�(t)|, we
calculate

δRα
12(t) = TrN (〈�1|(Rα − �RSH (t))ρ̂(t)|�2〉), (39)

= σ12

∫
d �R(g1( �R)

(
Rα − Rα

SH (t)
)

g∗
2 ( �R)

)
, (40)

= σ12 ·
(

i

2

(
Pα

1 − Pα
2

)
a2

Rα

¯

+ 1

2

(
Rα

1 + Rα
2

)− RSH (t)

)
· SFC , (41)

SFC =
∏
β

exp

(
−1

4a2
Rβ

(
Rβ

1 − Rβ

2

)2)

× exp

(
−1

4a2
Pβ

(
Pβ

1 − Pβ

2

)2)

× exp

(
− i

2¯

(
Rβ

1 − Rβ

2

)(
Pβ

1 + Pβ

2

))
. (42)

Because SFC ≈ 1 to zeroth order in R1 − R2 and P1 − P2,
and [ 1

2 (Rα
1 + Rα

2 ) − RSH ] is real and first order, we find that
(again, to first order)

Im

(
δRα

12

σ12

)
≈
(
Pα

1 − Pα
2

)
a2

Rα

2¯

= ¯
(
Pα

1 − Pα
2

)
2a2

Pα

=
(
Pα

1 − Pα
2

)
aRα

2aPα

(43)

and thus, if there are no derivative couplings, the decoherence
rate is

1

τd
=
∑

α

((
Fα

11 − Fα
22

)(
Pα

11 − Pα
22

)
2a2

Pα

)
. (44)

Note that we have derived the decoherence rate in
Eq. (44) using only a moment expansion of the Liouville
equation and an instantaneous ansatz for the wavefunction at
time t to be a coherent sum of Gaussian wavefunctions evolv-
ing independently. We have not assumed that, as a function of
time, our wavefunction is always the sum of frozen Gaussians
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evolving according to classical mechanics. Thus, we are able
to avoid entirely the question of when the second wave packet
is spawned.56–58 Naturally, the decoherence rate in Eq. (44)
agrees with the frozen Gaussian rate (Eq. (13)) up to first or-
der in the deviations R1 − R2, P1 − P2; the missing term in
Eq. (13) is second order and has presumably been ignored by
our moment expansion. Thus, Eq. (44) agrees with Prezhdo,
Rossky, Schwartz, and co-workers, who argued that the “mo-
mentum decoherence” term in Eq. (13) dominates the total
decoherence rate.35, 37, 38

2. Approximation #2: An optimal width for wave
packet overlap

While Eq. (44) is appealing, it is not useful unless
we have an estimate for the width of the wave packet
aPα = ¯/aRα . Rigorously, this quantity cannot be calculated
or even rationalized because we seek a classical treatment of
nuclei, wherein we cannot know the width of a wave packet.
Moreover, there are cases when this width plays a crucial role
in dynamics and must be known as a starting condition; see
Sec. III D. As a general estimate, Schwartz and co-workers
previously suggested using a thermal wavelength when com-
puting a decoherence time.37, 38 We will take a different ap-
proach. We will assume that the effective wave packet width
stretches to accommodate the newly emerging particles on
different surfaces so that the wave packets remain maxi-
mally connected in phase space before decoherence. Trans-
lated mathematically, we maximize |〈g1|g2〉| in Eq. (8) as a
function of either aPα or aRα ,

∂

∂aα
R

|〈g1|g2〉| = 0 or
∂

∂aα
P

|〈g1|g2〉| = 0 (45)

leading to the equivalent equalities

¯

a2
Pα

= a2
Rα

¯
=
∣∣Rα

1 − Rα
2

∣∣∣∣Pα
1 − Pα

2

∣∣
⇐⇒

∣∣Pα
1 − Pα

2

∣∣
aPα

=
∣∣Rα

1 − Rα
2

∣∣
aRα

. (46)

According to Eq. (46), we are guessing an effective width for
a nuclear quantum wave packet when undergoing a classical
simulation. Ultimately, this leads to a nearly stable expression
for the decoherence rate:

1

τd
≈
∑

α

(
Fα

11 − Fα
22

)(
Rα

11 − Rα
22

)
2¯

sign

(
Rα

11 − Rα
22

Pα
11 − Pα

22

)
. (47)

3. Approximation #3: A lower bound for the
decoherence rate

Equation (47) is nearly stable but not completely. The
last numerical deficiency with this expression is that, because
our moment expansion propagates the quantities δ R̂α, δ P̂α ,
there can be numerical problems when we divide by elec-
tronic populations in Eqs. (37) and (38). This numerical is-
sue can be overcome by realizing that, when doing FSSH for
two states, we will always expect that either Rα

11 ≈ RSH (t)
or Rα

22 ≈ RSH (t). Without loss of generality, let us assume
that we are walking on surface 1 so that Rα

11 ≈ RSH (t) and

δRα
11 ≈ 0. In this case, for all α, Rα

11 − Rα
22 ≈ −δRα

22/σ22, and
since σ22 < 1, we can find a lower bound on the decoherence
rate by replacing σ22 with unity. Therefore, we find a lower
bound for the decoherence rate to be

1

τd
≈
∑

α

((
Fα

11 − Fα
22

) (
δRα

11 − δRα
22

)
2¯

)

× sign

(
δRα

11 − δRα
22

δPα
11 − δPα

22

)
. (48)

For the remainder of this paper, we will apply stochas-
tic decoherence event at the rate 1/τd in Eq. (48) for a se-
ries of one-dimensional model problems, and we will show
that it gives a major correction to standard FSSH. Later, in
Sec. IV, we will also discuss how this correction corresponds
roughly to the decoherence correction we applied recently to
Ehrenfest dynamics.52

C. An augmented FSSH algorithm step-by-step

For the sake of concreteness, we now outline the al-
gorithm discussed above for incorporating decoherence into
traditional FSSH dynamics. According to this approach,
the desired quantum-classical dynamics undergo stochastic
events because of both hops and collapses. These two phe-
nomena are distinct and capture different dynamic behav-
ior. As introduced by Tully, hops account for population
exchanging between wave packets located near each other in
configuration space. As discussed in the previous subsection,
collapsing events account for wave packets on different sur-
faces moving apart in phase space. A step-by-step outline of
our algorithm is as follows:

(1) As in standard FSSH, initialize the mixed quantum-
classical trajectory by fixing the initial classical co-
ordinates �R0, �P0 and electronic density matrix σ̂0 at
time t = 0. We usually assume that we begin on

one adiabatic surface, hence σ̂0 = ( 1 0
0 0

)
or
(

0 0
0 1

)
. De-

note by a this initial adiabatic electronic state. Set

δ R̂ = δ P̂ = ( 0 0
0 0

)
.

(2) As in standard FSSH, between time t and t + dt , propa-
gate �R, �P , σ̂ according to Eqs. (7), (49), and (50)

d Rα

dt
= Pα

M
, (49)

d Pα

dt
= Fα

aa( �R). (50)

Unique to A-FSSH, propagate δ R̂ and δ P̂ according to
Eqs. (29) and (31), respectively.

(3) As in standard FSSH, while the nuclei are being propa-
gated along the ath adiabatic electronic surface, at each
time step, we evaluate the probability to switch to the
bth surface, γ a→b

hop . This probability is designed to match
the rate at which the electronic state is changing, and it
can easily be shown13 that:

γ a→b
hop = −

∑
α

2Pα

Mα

Re
(
dα

ba( �R)σab
)

σaa
dt. (51)
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(4) As in standard FSSH, use a random number generator to
construct a random number ζ ∈ [0, 1].
(a) If ζ > γhop, do not hop. Continue to step 6.
(b) If ζ < γhop, there will be a hopping event if it is en-

ergetically allowed. Continue to step 5.
(5) As in standard FSSH, in order to maintain energy

conservation when moving from the ath to the bth adi-
abatic potential energy surface, we rescale the nuclear
momentum in a direction �usc. In standard FSSH,13 �usc is
chosen to be the direction of the instantaneous nonadi-
abatic derivative coupling, �usc = �dab/| �dab|. For multidi-
mensional problems, in contrast to traditional FSSH, we
argue that one should rescale momentum in the direction
�usc = δ �Pbb − δ �Paa. See Sec. IV for discussion. If �Psc is
the instantaneous momentum in the direction �usc, i.e.,
�Psc = ( �P · �usc)�usc, we require

∑
α

(Pα
sc)2

2Mα
+ Vaa( �R) =

∑
α

(
Pnew,α

sc

)2
2Mα

+ Vbb( �R). (52)

(a) If the upper state is not accessible, continue to step
6.

(b) If the upper state is accessible, a hop occurs. Rescale
the momentum, �P = �Pnew, and translate the first
moments so as to simulate a new central trajectory
with δRα

bb = δPα
bb = 0,

δPα
i j → δPα

i j − δi jδPα
bb, (53)

δRα
i j → δRα

i j − δi jδRα
bb. (54)

Now switch the labels of electronic surfaces a and b
(so that we are again walking on the “ath” surface)
and continue to step 6.

(6) Unique to A-FSSH, generate a second random number,
η ∈ [0, 1]. Construct the probability for collapse to the
ath adiabatic electronic state (γcollapse) by evaluating

γcollapse = dt
∑

α

[(
Fα

11 − Fα
22

) (
δRα

11 − δRα
22

)
2¯

]

× sign

(
δRα

11 − δRα
22

δPα
11 − δPα

22

)
, (55)

where, as above, dt is the simulation time step.
(a) If η > γcollapse, there is no collapsing event. Return

to step 2.
(b) If η < γcollapse, there is a collapsing event to elec-

tronic state a. Set σ̂ = ( 1 0
0 0

)
or
(

0 0
0 1

)
, depending on

whether a = 1, 2. Set δ R̂ = δ P̂ = ( 0 0
0 0

)
. Return to

step 2.

III. NUMERICAL EXAMPLES

The A-FSSH algorithm described above has been tested
on four model problems, the first two of which were
suggested by Tully in his original FSSH paper.13 The first
problem is a dual avoided crossing and the second problem
is an extended coupling problem. These problems represent
good test cases because, on the one hand, the first prob-

lem requires capturing a great deal of coherence to account
for Stueckelberg oscillations. On the other hand, the second
problem requires capturing significant decoherence, as the
wave packets on different surfaces move in totally opposite
directions. For the third and fourth problems, we combine
elements of problems #1 and #2, and consider two symmetric
problems with regions of extended coupling. In this case, one
must balance treatments of coherence versus decoherence.
We find that, to a good approximation, our augmented FSSH
performs well in all cases when compared with unmodified
FSSH or Ehrenfest dynamics. Incidentally, in all cases we find
that ignoring second derivatives and substituting Eq. (30) with
Eq. (31) has a minimal effect.

All trajectory-based calculations used a time step
dt = 0.3 a.u. for dynamic propagation. The particle started
at position x = −20 and trajectories were stopped when the
particle reached x = ±25. We ignored all trajectories that
required more than 500 000 times steps, which was always
less than 0.5% of the total. We sampled 2000 trajectories
at each incident velocity for each model problem. Our
algorithm for computing exact quantum results is described
in the Appendix.

A. Dual avoided crossing

The first problem is a dual avoided crossing defined by
the following diabatic curves:

V11(x) = 0, (56)

V22(x) = −Ae−Bx2 + E, (57)

V12(x) = V21(x) = Ce−Dx2
. (58)

Here A = 0.1, B = 0.28, C = 0.015, D = 0.06, and E = 0.05.
The corresponding adiabatic states are plotted in Fig. 1. As-
suming that the particle comes in from the left on the lower
state, it needs an initial momentum k > 14.1 to reach the up-
per state asymptotically.

Branching ratios for the different flavors of surface hop-
ping are shown in Fig. 2. The first conclusion from these
data is that, when one ignores decoherence entirely (i.e., the
standard FSSH algorithm), one models the branching ratios
well, with excellent agreement at high energies and moder-
ate agreement at low energies, in agreement with Ref. 13.
Next, if one adds decoherence, the results remain accurate at
high energies, while at low energies, one partially corrects the
erroneous large reflection coefficient found by the FSSH al-
gorithm, moving from 14% to 8%. The exact result has less
than 2% reflection. In order to further improve our calculated
results, presumably we must explicitly model wave packet
separation and subsequent interference, which is not possible
using surface-hopping dynamics alone.

Beyond the branching ratios, we can also assess the
strength of our algorithm by considering the electronic state
of the outgoing particle. In Figs. 3(c) and 3(d), we plot the
fictitious electronic population on the upper surface for tra-
jectories that are transmitted or reflected on the lower sur-
face, respectively. Although the upper channel is closed below
k = 14.1 a.u., emerging trajectories on the lower state do have
population on the upper channel according to standard FSSH.
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FIG. 1. The potential energy surfaces considered in this paper. The first two model problems were suggested by Tully (Ref. 13): (a) a dual avoided crossing;
and (b) an extended coupling problem. The third and fourth problems are symmetrized versions of the second problem, which requires a balanced treatment of
coherent versus decoherent effects: (c) a dumbbell geometry, (d) a double arch geometry.

This is a failure of the FSSH algorithm: as the wave packet
emerges, the electronic state must be completely on the lower
surface. Unfortunately, within the context of our A-FSSH
algorithm, the fictitious population on the upper reflected
channel is actually increased when we apply decoherence.
Fortunately, the total probability for reflection is no larger
than 8%, so this is a relatively minor effect in terms of total
probabilities. Nevertheless, in order to correct this unphysical

feature, one approach would be to implement free space de-
coherence, whereby wave packets on different surfaces with
different momenta may separate even in the absence of forces.
This will be discussed in Sec. IV A.

Before concluding, we mention that, according to
Fig. 3(b), the number of decoherence events requested by our
augmented FSSH algorithm is large at low energies but small
at high energies for this dual avoided crossing. Looking at the
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FIG. 2. Branching ratios for the first numerical model problem, a dual avoided crossing. Exact results are shown in black, Ehrenfest in green, Tully’s FSSH in
blue. Our A-FSSH results are shown in solid red.
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FIG. 3. (a) The average number of hopping events and (b) the average number of collapsing (or decoherence) events as a function of incoming wavevector k
for the dual avoided crossing. (c) The average electronic population on the upper state for a trajectory that is transmitted on the lower state. (d) The average
electronic population on the upper state for a trajectory that is reflected on the lower state. Below k = 14.1 a.u.—where one sees a dotted black line—the
channel is closed and there should be zero population on the upper state.

branching ratios in Fig. 2, we conclude that the augmented
FSSH algorithm correctly surmises when FSSH is failing and
when a decoherence correction is needed. This is one encour-
aging development, which will be heavily exploited in the sec-
ond model problem below.

B. Extended coupling

The second problem is a Hamiltonian with extended cou-
pling defined by the following diabatic curves:

V11(x) = A, (59)

V22(x) = −A, (60)

V12(x) = V21(x) =
{

BeCx x < 0
B(2 − e−Cx ) x > 0,

(61)

where A = 6 × 10−4, B = 0.1, and C = 0.9. As before, the
corresponding adiabatic states are plotted in Fig. 1, and in this
case, if the particle comes in from the left on the lower state, it
needs an initial momentum k > 28.2 to reach the upper state
asymptotically.

This model problem demonstrates exactly why deco-
herence is needed in the standard FSSH algorithm. When a
particle with low kinetic energy approaches from infinity on
the left, it is quickly entangled into a mixed state. As the parti-
cle reaches the origin, the derivative coupling disappears, and
the wave packet on the lower surface should transmit while
the wave packet on the upper surface should reflect. The
essential point is that the two wave packets must separate
and the interaction between them must eventually van-
ish. This contingency is not possible, however, according
to standard FSSH, and the result is the chaotic set of

reflecting branching ratios in Fig. 4. Numerically, these
chaotic FSSH branching ratios are the result of a particle
on the upper surface re-entering the region of derivative
coupling while starting in an entangled electronic state;
the initial entangled electronic density matrix responds
chaotically to another region of derivative coupling. Luck-
ily, in this case, one can average the FSSH results over
k-values to find the correct and smooth branching ratios.13

For the next model problem, however, we will show that this
is not always possible.

Within the framework of FSSH, the easiest way to
compute the correct branching ratios in this problem is to
collapse the electronic density matrix of each particle to an
adiabatic state when appropriate.59 By doing so, we can al-
low the particle’s wave packets to split apart, one going for-
ward and one going backward. According to our A-FSSH al-
gorithm, for each trajectory, we find at least one decoherence
event as shown in Fig. 5(b), and as a result, we find the correct
branching ratios.

Before concluding this subsection, we mention that, be-
yond branching ratios, according to Fig. 5(c), our augmented
FSSH algorithm also predicts that:

(1) Every reflecting trajectory will carry an electronic den-
sity matrix which is entangled between the lower and
upper adiabatic eigenstates.

(2) Every trajectory transmitting on the lower surface will
always have less than 10% electronic population on the
upper surface for kinc < 40.

The first statement above is quite reasonable, because
for reflection, the upper and lower adiabatic states are
nearly isoenergetic. The second statement, however, is much
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FIG. 4. The same quantities are plotted as in Fig. 2, only now for the second numerical model problem, the extended coupling Hamiltonian.

stronger, especially for high energies. On the one hand,
for low energies, kinc < 28, we find only reflection on the
upper surface while transmission is possible on the lower sur-
face. Thus, we expect to see each transmitted particle exit-
ing the interaction region in an exact adiabatic state. On the
other hand, however, at high energies kinc > 28, the particle
is transmitted on both the upper and lower surfaces. In this
case, the outgoing state must be a superposition of the up-
per and lower electronic states at least for a short time. In a
moment, however, we will demonstrate that this superposi-

tion state can be short lived and we will verify the predictions
of Fig. 5(c).

C. Dumbbell geometry

The third model problem we treat is a symmetrized ver-
sion of the extended coupling problem, shaped like a dumb-
bell. In this case, we choose the Hamiltonian to be

V11(x) = A, (62)
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FIG. 5. The same quantities are plotted as in Fig. 3, only now for the second numerical model problem, the extended coupling Hamiltonian. In this case, the
upper channel is rigorously closed below k = 28.2 a.u.
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FIG. 6. The same quantities are plotted as in Fig. 2, only now for the third numerical model problem, with a dumbbell geometry. In dotted brown, we show
FSSH branching ratios averaged over aK = kinc/60 in Eq. (65). Neither the FSSH nor averaged FSSH results agree qualitatively with exact results. For the
exact quantum results, the exact size of the transmission peak at k ≈ 29 is not fully converged, and it grows proportionally to the spatial width of the incoming
wave packet. According to both A-FSSH and FSSH results, we would predict there should be nearly 100% transmission in this range for a large enough spatial
width. See the Appendix.

V22(x) = −A, (63)

V12(x) = V21(x)

=
⎧⎨
⎩

BeC(x−Z ) + B(2 − eC(x+Z )) x < −Z
BeC(x−Z ) + Be−C(x+Z ) −Z < x < Z
B(2 − e−C(x−Z )) + Be−C(x+Z ) x > Z .

(64)

A,B,C are chosen as in model problem #2 and we set Z = 10.
See Fig. 1 for a graphical plot of the corresponding adiabatic
states and derivative coupling. As a particle comes in from the
left on the lower state, it needs an initial momentum k > 28
or so to overcome the barrier and enter the strong coupling
region in the center of the potential. Asymptotically, in order
to exit on the excited channel, the particle requires an even
larger momentum, k > 40.

The Hamiltonian in Eqs. (62)–(64) combines the difficul-
ties of both of the previous model problems. On the one hand,
we expect there will be resonance features because there are
two successive regions of derivative coupling between adi-
abatic surfaces. So coherences between wave packets will be
important. On the other hand, we also expect that for kinc < 40
the nuclear wave packet will sometimes split in two, and it
will be crucial to correctly model the collapse of the elec-
tronic density matrix to the correct state (i.e., decoherence).
The electronic state of a particle emerging from a region of
derivative coupling is important.

In Fig. 6, we plot the branching ratios for the differ-
ent outgoing channels and demonstrate the features suggested
above. First, according to the exact quantum dynamical re-

sults, at momenta k < 28, one can tunnel between the left and
right hand sides of the barrier. This feature is obviously miss-
ing from all the trajectory-based methods discussed above.
At slightly higher energies, one finds a resonance peak in
transmission around k ≈ 29 onto the lower surface. Third,
for 32 < k < 40, one finds a gradual increase of transmission
versus reflection (all along the lower surface). Fourth and fi-
nally, for large energies (k > 40), the probability of reflection
vanishes and the particle is entirely transmitted either on the
upper or lower surfaces.

According to Fig. 6, our augmented FSSH algorithm
clearly outperforms both Ehrenfest dynamics and standard
FSSH for this problem. Standard FSSH dynamics fluctuates
wildly for k < 40. Moreover, in contrast to the previous prob-
lem, here one cannot capture the correct branching ratios by
merely averaging the results over k-values. Specifically, sup-
pose we average the FSSH branching ratios by using a Gaus-
sian convolution to approximate the behavior of a Gaussian
wave packet with momentum-space width aK :

w avg
FSSH(k) = 1√

2πa2
K

∫
dk ′ exp

(
− (k ′ − k)2

2a2
K (k)

)
wFSSH(k ′).

(65)

In dotted brown, we show that, when averaged over aK

= kinc/60, FSSH still yields qualitatively incorrect features:
now, too many features are smoothed away, including the
peak in transmission near k = 29 a.u. Here, the width aK

= kinc/60 was chosen after searching by hand for the
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FIG. 7. The same quantities are plotted as in Fig. 3, only now for the third numerical model problem, the dumbbell geometry. In order to avoid wild oscillations
in the branching ratios around k ≈ 29 a.u., our algorithm predicts two/three decoherence events per trajectory as the particle oscillates on the upper surface. The
upper surface is closed asymptotically for k < 40 a.u.

maximum n for which aK = kinc/n smoothed away the FSSH
oscillations in Fig. 6.

Encouragingly, when we introduce decoherence stochas-
tically at the rate determined by Eq. (48), we find both smooth
and accurate results. Moreover, A-FSSH captures the shape of
the transmission peak (at k ≈ 29) very well. Regarding the ab-
solute size of that same peak, one should not rigorously com-
pare our work to the “exact” quantum results, for the latter are
somewhat sensitive to the width of the incoming wave packet
(see Appendix). Finally, we mention that, like FSSH, Ehren-
fest dynamics also behaves chaotically near the resonance re-
gion, and mean-field dynamics do not allow any reflection for
momenta in the range 32 < k < 40. Curiously, in this same
range, the transmission ratio for FSSH dynamics appears to
fluctuate between the exact results and Ehrenfest dynamics.

Regarding the state of the electronic system as the par-
ticle emerges from the scattering region, we show in Fig. 7
that for low energies there is zero population in the energet-
ically inaccessible electronic state when we apply our deco-
herence correction. Furthermore, we see that in the region of
resonance (28 < k < 29) we predict more than two decoher-
ence events per trajectory. For these semiclassical trajectories,
the particle oscillates back and forth on the upper surface be-
fore returning to the ground state, and there is a resulting peak
in transmission.

D. Double arch geometry

The fourth and final model problem we treat is the con-
verse of the third problem, where we now have one short re-
gion of extended coupling and the final adiabatic curves are

shaped like a double arch. See Fig. 1 for a graphical plot of the
corresponding adiabatic states and derivative couplings. The
exact Hamiltonian we choose is

V11(x) = A, (66)

V22(x) = −A, (67)

V12(x) = V21(x)

=
⎧⎨
⎩

−BeC(x−Z ) + BeC(x+Z ) x < −Z
−BeC(x−Z ) − Be−C(x+Z ) + 2B −Z < x < Z
Be−C(x−Z ) − Be−C(x+Z ) x > Z .

(68)

A,B,C are again chosen as in model problem #2. We choose
Z = 4. On the lower state, there is no barrier to transmis-
sion, but for the upper state, a particle needs an initial mo-
mentum k > 28 to overcome the barrier. Asymptotically, in
order to exit on the excited channel, there is effectively a zero
energy penalty. This fourth model problem builds on model
problem #2. Using the Hamiltonian in Eqs. (66)–(68) and
inserting a second region of derivative coupling,15 we now
investigate what are the implications of the entangled asymp-
totic state described in Fig. 5.

A crucial property of this model Hamiltonian is that the
branching ratios depend sensitively on the width of the incom-
ing wave packet. First, for a wave packet that is infinitely wide
in real space (aX = 0 or aP = aK = ∞), i.e., a plane wave,
the exact branching ratios for transmission oscillate rapidly,
starting just above k = 28 a.u. Exact results found by time-
independent scattering theory are shown in Fig. 8. These os-
cillations are caused by interference effects between waves
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FIG. 8. A-FSSH and exact results for the fourth fourth numerical model problem, the double arch geometry. For this model problem, the exact results depend on
the width of the incoming wave packet. In this figure, we present exact results from incoming wave packets with infinite spatial width (aX = ∞ or aP = aK = 0,
i.e. plane waves) calculated with time-independent scattering theory (Ref. 60). For these exact results, there are no oscillations below k < 28 a.u., while above
this threshold there are full oscillations in the transmission channels. Note the decreasing frequency of these oscillations as k grows. A-FSSH agrees roughly with
these exact results, in that the oscillations disappear below k = 28 a.u., but according to A-FSSH, these oscillations begin only slowly and grow in amplitude
with k above 28 a.u. Note that these A-FSSH results correspond qualitatively to the exact results for wave packets of finite width. See Fig. 10(b).

transmitted on the upper and lower surfaces. The frequency
of oscillation decreases as kinc increases because, for high en-
ergies, the relative differences in velocity between the upper
and lower surface become minimal.

Second, for a finite Gaussian wave packet with width
aP or aX , the initial state is a superposition of many plane
waves [as in Eq. (36)], and thus one must average plane-wave
branching ratios over different Pinc or kinc values. Mathemat-
ically, this averaging is represented precisely by Eq. (65),
where aK now represents the width of the incoming wave
packet in k-space. Applying the convolution in Eq. (65), we
now find that the oscillations in Fig. 8 are damped, growing
only slowly in amplitude as k increases above 28 a.u. [see
Fig. 10(b)]. Qualitatively, the finite wave packet results in
Fig. 10(b) agree with our A-FSSH results in Fig. 8. Note the
shape of the envelope function in Fig. 10(b) depends sensi-
tively on the incoming width of the wave packet.

Having discussed Figs. 8 and 10(b) in terms of time-
independent quantum mechanics, let us now turn to a time-
dependent picture where we find that decoherence is crucial
for understanding these figures. From a time-dependent per-
spective, there are actually three distinct energy regimes in
Fig. 10(b). At low energies, k < 28 a.u., just as we saw in
model problem #2, the wave packet launched onto the lower
surface is transmitted while the wave packet on the upper
surfaces reflects, so the decoherence probability is 100% for
each trajectory. At medium energies, k just above 28 a.u.,
wave packets can be transmitted on both upper and lower
surfaces. However, the wave packet on the lower surface has

a much higher velocity than the wave packet on the upper
surface. As such, the two wave packets partially separate
before arriving at the second region of nonadiabatic deriva-
tive coupling, and we will find only partial oscillations in
branching ratios. Finally, at high energies, k � 28 a.u., the
size of the double arch barrier is relatively small, and the
two wave packets travel effectively together in space. In this
regime, we find full oscillations from 0 to 1 in the trans-
mission branching ratios. In general, we find that the oscil-
lations in branching ratios disappear when the wave packets
separate.

The sensitivity to incoming width seen in Fig. 10(b)
comes about in differentiating the medium versus high en-
ergy regime. Here, wave packet separation depends on the
wave packet width, and over the flat barrier (just as in free
space), spatially narrow wave packets separate more easily
than spatially diffuse wave packets. From this model Hamil-
tonian, therefore, we conclude that sometimes decoherence
rates will depend critically on the shape of the incoming wave
packet and our guess for the wave packet width Eq. (46)
can be impractical. More generally, for cases like these, it is
unlikely that any surface-hopping algorithm can succeed
quantitatively because surface-hopping algorithms seek a
classical treatment of nuclei, whereby all wave packet widths
are ignored implicitly.

Despite the formal difficulties above, it is comforting to
see in Fig. 8 that A-FSSH yields many of the correct qual-
itative features of the quantum wave packet result. Namely,
according to A-FSSH, there are no oscillations in branching
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FIG. 9. The same quantities are plotted as in Fig. 3, only now for the fourth numerical model problem, the double arch geometry.

ratios at low energies, while there are oscillations that grow in
amplitude as k increases beyond 28 a.u. These features are ex-
plained by Fig. 9, where we show that the number of collaps-
ing events decreases dramatically for large kinc. The A-FSSH
algorithm correctly surmises when decoherence should be ap-
plied via collapsing events. In theory, one could also study
A-FSSH dynamics using the incoming wave packet width
instead of Eq. (46), though such information is usually not
available when doing surface-hopping dynamics.

Before concluding, note that standard FSSH algorithm
fails for this model problem [see Fig. 10(a)]. Of course, at
low energies, FSSH predicts artificial oscillations in reflec-
tion branching ratios just as in model problem #2. More in-
terestingly, at all energies, FSSH also predicts oscillations in
transmission branching ratios. This is completely unphysical:
as discussed above, the correct answer must have no oscil-
lations in transmission at low energies and large oscillations
at high energy. Because FSSH never collapses the wavefunc-
tion, however, wave packets on the different surfaces are never
allowed to separate and the omnipresent oscillations in
branching ratios in Fig. 8 are precisely the consequence of
the fictitious electronic populations in Fig. 5(c).

IV. DISCUSSION AND CONCLUSIONS

In this article, we have presented a new algorithm for
calculating a decoherence rate when performing trajectory-
based FSSH dynamics. Our approach has used standard FSSH
dynamics to generate one central trajectory, along which we
do a moment expansion in the coupled nuclear-electron co-
ordinates of the quantum dynamical Liouville equation. As
shown by Bowler, Todorov, Horsfield, and co-workers,48, 53–55

the resulting equations of motion are solvable if we throw
out all terms at second or higher order. Next, if we make

an instantaneous Gaussian ansatz and assume that the wave
packet stretches to accommodate relative changes in posi-
tion/momentum space, as in Eq. (46), we obtain a simple de-
coherence rate. Finally, we have demonstrated that this rate
works well for the one-dimensional model problems consid-
ered above, and that the resulting algorithm is very stable. Be-
fore concluding, we now assess the value of our dynamical
routine relative to other approaches and discuss the long-term
implications of this research.

A. Free space decoherence and understanding
decoherence in units of ¯

According to Eq. (55), wave packets separate only when
they feel different forces, F11 �= F22. Thus, this equation does
not allow for free space decoherence. For example, suppose
that a particle enters a region of nonzero derivative coupling,
and as it emerges into free space, we find δR11 �= δR22 and
δP11 �= δP22. Henceforward, as the particle moves along one
surface with F̂ = K̂ = 0, we find

d

dt
δPα

11 = 0,
d

dt
δPα

22 = 0, (69)

d

dt
δRα

11 = δPα
11

Mα
,

d

dt
δRα

22 = δPα
22

Mα
(70)

⇒ δRα
22(t) − δRα

11(t) = δPα
22(0) − δPα

11(0)

Mα
t. (71)

Thus, the particle’s “images” on the different surfaces are
constantly moving apart at a constant rate, and if we wait
long enough, we will find |δR11 − δR22| → ∞. However, be-
cause F11 = F22 = 0, Eq. (55) does not demand any collaps-
ing events for this problem.
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FIG. 10. The fourth model problem, the double arch geometry: (a) We plot the FSSH and Ehrenfest branching ratio for transmission along the lower surface.
Both methods fail qualitatively and predict oscillations at all energies. (b) Relative to plane-wave calculations (aP = 0 in black), we plot the exact branching
ratios for an incoming wave packet with finite spatial width aX and momentum width aP = ¯/aX . These results can be obtained using either Eq. (65), or using
time-dependent scattering theory. See the Appendix. According to these calculations of finite wave packets, the oscillations in transmission grow slowly in
amplitude starting above k = 28 a.u.

From the example above, we conclude that ultimately
Eq. (55) needs a correction to account for free space decoher-
ence. In order to implement such a correction, one approach
would be to incorporate the second term in Eq. (13) (which
is second order in δP, δR) into the decoherence rate. This
second-order term allows wave packets with different veloc-
ities to separate in free space, even when there is no force
difference between potential energy surfaces. Using Eq. (46)
to estimate a width, and again choosing a lower bound so that
we can ignore factors of σ , the decoherence rate then becomes

1

τd
≈
∑

α

[(
Fα

11 − Fα
22

) (
δRα

11 − δRα
22

)
2¯

+
(
δPα

11 − δPα
22

)2
2Mα¯

]

× sign

(
δRα

11 − δRα
22

δPα
11 − δPα

22

)
. (72)

Interestingly, in one dimension, the second term in
Eq. (72) has the appealing property of being roughly the ki-
netic energy of one nuclear wave packet relative to another—
divided by ¯. In the same spirit, the first term in Eq. (72) is
roughly a difference in potential energy between two wave
packets—again divided by ¯. Thus, ¯ emerges as the central
energy scale for understanding decoherence according to our
algorithm.

Equation (72) is a physically appealing decoherence rate
and, in preliminary studies, it performs well on the model
problems in this paper. Nevertheless, thus far, we are not con-
vinced that the second-order term is necessary for several rea-
sons. First, we have not rigorously derived Eq. (72) from the
quantum Liouville equation. Second, suppose we were to ex-

tend the QLE expansion in Sec. II A to second order; in this
case, even if we could replicate Eq. (72), there would also be
other new terms. It is not clear that we should focus only on
the terms arising from a frozen Gaussian ansatz. Third, empir-
ically we have found that in Eq. (72), the second term is usu-
ally larger than the first term, which is unsatisfying. Fourth,
though we cannot prove it generally, our intuition is that free-
space decoherence depends more sensitively on the width of
the incoming wave packet than does force-induced decoher-
ence, which makes the former very difficult to model within
surface hopping. This is certainly true for model problem #4.

Notwithstanding these reservations, decoherence expres-
sions that account for free space [e.g., Eq. (72)] should be
investigated. As a first step, new model problems are needed
whereby free-space decoherence effects can be isolated that
do not depend sensitively on the width of the initial nuclear
wave packet (unlike model problem #4).

B. Comparison with Ehrenfest dynamics, CEID, and
our previous work

Within the framework of quantum-classical methods, the
simplest alternative to FSSH dynamics is mean-field (Ehren-
fest) dynamics. While traditional Ehrenfest dynamics is very
inexpensive, Figs. 4, 6, and 10 demonstrate this algorithm
fails drastically for the model problems above. Beyond Ehren-
fest dynamics, we have compared our results with the power-
ful correlated electron-ion dynamics (CEID) algorithm due to
Bowler, Todorov, Horsfield, and co-workers.48, 53–55 CEID is a
smooth nonadiabatic algorithm that computes and stores mo-
ments around Ehrenfest trajectories, and then carefully adds
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together the resulting corrections to traditional Ehrenfest dy-
namics. Unfortunately, we have found numerical instabilities
when running first-order CEID on model problem #2 above.
This agrees with previous CEID work that suggests that, for
large electron–phonon interactions, one must go beyond first-
order CEID.54

Nevertheless, although first-order CEID may not be di-
rectly applicable to these problems, the stochastic approach in
this paper can be easily generalized to any central trajectory
of interest, and in particular Ehrenfest or mean-field dynam-
ics. After all, we have borrowed our moment expansion in
Eqs. (23)–(26) from the CEID algorithm! To fashion a
stochastic algorithm based on Ehrenfest dynamics, one need
only replace (RSH(t), PSH(t)) by (RMF(t), PMF(t)), which
means replacing Eq. (50) with Eq. (73):

d Pα

dt
=
∑
ab

Fα
ab( �R)σba . (73)

If one then runs mean-field dynamics with stochastic
decoherence events at the rate of Eq. (55), one finds
an algorithm somewhat similar to the Schwartz MF-SD
algorithm,37, 38 and very similar in spirit61 to our previous
algorithm in Ref. 52 (provided we make the identification,
δRα

i j/¯→ “∂σi j/∂ Pα”). In the present article, however, the
derivation of the decoherence rate in Eq. (55) is more rigor-
ous than the derivation in Ref. 52; moreover, the equations of
motion in Ref. 52 were only approximately correct, as they
were based on Ehrenfest dynamics rather than the quantum
Liouville equation.

Comparing augmented FSSH and augmented Ehren-
fest dynamics, augmented FSSH has one major ad-
vantage. Namely, because FSSH obeys detailed balance
approximately,47 A-FSSH should do so as well. In particu-
lar, if we focus on the straightforward problem in Ref. 47, A-
FSSH and FSSH will give identical results because F11 = F22

and there is no decoherence correction according to Eq. (55).
At the same time, as shown by Schmidt, Parandekar, and
Tully, Ehrenfest dynamics does not obey detailed balance for
this system and, according to our preliminary results, this re-
mains true even when we allow for stochastic decoherence
events around Ehrenfest trajectories.

C. Momentum rescaling and nonlocal
hops/collapsing events

In the future, the most important benchmarking possi-
ble for this A-FSSH algorithm will require exploring multi-
dimensional problems in quantum dynamics, where energy
can be dissipated among many different nuclear degrees of
freedom. For such problems, Tully has suggested for standard
FSSH that, when a hop occurs from electronic state a to elec-
tronic state b, one should rescale the momentum in the direc-
tion of the instantaneous derivative coupling, i.e., �usc = �dab in
Eq. (52).13

The ideas presented in this paper, however, suggest a dif-
ferent ansatz. Here, it would appear natural that if we are
going to rescale the momentum, it ought to be rescaled in
the direction �usc = δ �Pbb − δ �Paa . After all, this change in mo-

mentum space should approximate, to first order, the relative
momenta of the two different wave packets in phase space.
Furthermore, this solution suggests that the position coordi-
nate as well as the momentum coordinate could be rescaled
when we make a hop. The possibility of position adjustment
has been explored successfully in recent years by Heller and
Beck,62 Heller et al.,63 and Yang et al.58 We hope to explore
this idea further within the context of A-FSSH dynamics, but
in practical terms, it will be difficult to achieve efficiently for
on-the-fly dynamics, whereby we do not have a global func-
tional form for each potential energy surface but must still
conserve energy. Ultimately, position adjustment may be im-
possible unless an iterative scheme is employed which locally
explores the potential energy surface whenever a hop is made.

Interestingly, for augmented Ehrenfest dynamics (with
stochastic decoherence events), we have found it necessary
to apply nonlocal collapsing events in order to achieve the
correct branching ratios for the original Tully scattering
problems.52 In particular, we were forced to move both
in real space and momentum space in order to allow a
collapsing event to a forbidden electronic state. In contrast,
because FSSH dynamics do not allow movement along
closed channels, collapsing events in the A-FSSH algorithm
can be entirely local in real space. These different treatments
of forbidden states are closely tied to satisfying detailed
balance.47 Given the many possibilities raised by our ap-
proach, choosing a new direction for momentum rescaling
will be addressed in a future publication.

D. Computational cost

Having demonstrated the reasons and rationale for apply-
ing decoherence to the FSSH algorithm, we want to empha-
size that computational cost should not prevent this algorithm
from being applied broadly. We first discuss electronic struc-
ture requirements. Formally, the computational cost of the al-
gorithm proposed in Sec. A 2 is much larger than the cost of
the standard FSSH algorithm. After all, according to Eq. (30),
we require second derivatives (or Hessians) of the potential
energy surfaces. That being said, however, if we disregard the
second derivatives in Eq. (30) and instead use Eq. (31), we
obtain results that are effectively identical to the exact results
for the few problems considered here. Moreover, by ignoring
second derivatives, the only difference in electronic structure
needs between A-FSSH and FSSH dynamics is that A-FSSH
requires the full gradient matrix while FSSH requires the en-
ergetic gradient along only one surface. As such, for two elec-
tronic surfaces, the A-FSSH algorithm should be only two to
four times as expensive as standard FSSH. Although we have
not treated the case of n electronic states in this paper, pre-
sumably the additional cost will be between n and n2 most
generally, where ideally n is a small number.

Beyond the computational cost of electronic structure
calls, suppose that we were to propagate surface-hopping dy-
namics with two fitted potential energy surfaces. In this case,
A-FSSH propagates two to four times the number of variables
as FSSH, and again, A-FSSH should be only two to four times
as expensive as standard FSSH.
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An immediate goal for future research will be to compu-
tationally verify these statements about algorithmic scaling.
If confirmed, the A-FSSH algorithm will be computationally
feasible whenever standard FSSH is feasible, and our hope is
that A-FSSH will be adopted and compared broadly to stan-
dard FSSH dynamics.

E. Conclusions

In conclusion, for the past twenty years, the standard
FSSH algorithm has been a powerful tool for solving nona-
diabatic problems in chemical dynamics without accounting
for decoherence. In order to account for decoherence ap-
proximately, we have proposed an augmented algorithm that
requires two modifications of the standard FSSH approach.
First, in addition to the standard variables (Rα, Pα, σ̂ ), we
propagate a few more quantities that carry information about
nuclear-electronic correlation (δ R̂α and δ P̂α). Second, we al-
low wave packets on different surfaces to separate (i.e., deco-
here) by collapsing the wavefunction at the rate of Eq. (48).
Soon, we will extend the algorithm here to the case of more
than two electronic states. Starting with a standard FSSH
code, our algorithm is easy to implement, the total computa-
tional cost should be only a factor of two or four times higher
(for two electronic states), and the preliminary results are thus
far very encouraging. In the future, we hope that others who
are interested in nonadiabatic dynamics will implement this
augmented FSSH algorithm and investigate the consequences
of this new decoherence time scale.
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APPENDIX: FURTHER DETAILS

1. Equations of motion for δP̂ and δR̂

We now derive Eqs. (24) and (26) for δ R̂ and δ P̂ in an
exactly diabatic basis. Starting with the definitions

ρred
jk (t) ≡ 〈
 j |ρ̂(t)|
k〉, (A1)

δRα
jk(t) ≡ 〈
 j |TrN (δRα(t) ρ̂(t))|
k〉, (A2)

δPα
jk(t) ≡ 〈
 j |TrN (δPα(t) ρ̂(t))|
k〉, (A3)

we compute (dropping the explicit “(t)” to represent time de-
pendence)

d

dt
δRα

jk = −i

¯
〈
 j |TrN (δRα [Ĥ, ρ̂])|
k〉 − Pα

SH

Mα
σ jk (A4)

= −i

¯
〈
 j |TrN (δRα [V̂, ρ̂])|
k〉

− i

¯
〈
 j |TrN (δRα [T, ρ̂])|
k〉 − Pα

SH

Mα
σ jk

≈ −i

¯
〈
 j |TrN (δRα [V̂ (RSH ), ρ̂])|
k〉

− i

¯
TrN
(
δRα

[
T, ρred

jk

])− Pα
SH

Mα
σ jk

= −i

¯
〈
 j |[V̂ (RSH ), TrN (δRαρ̂)]|
k〉

+ i

¯
TrN
(
ρred

jk [T, δRα]
)− Pα

SH

Mα
σ jk (A5)

= −i

¯
〈
 j |[V̂ (RSH ), δ R̂α]|
k〉

+ 1

Mα
TrN
(
ρred

jk Pα
)− Pα

SH

Mα
σ jk (A6)

= −i

¯
[V̂ (RSH ), δ R̂α] jk + δPα

jk

Mα
(A7)

d

dt
δPα

jk = −i

¯
〈
 j |TrN (δPα [Ĥ, ρ̂])|
k〉 − Fα

SH (t)σ jk (A8)

= −i

¯
〈
 j |TrN (δPα [V̂, ρ̂])|
k〉 − Fα

SH (t)σ jk (A9)

≈ −i

¯
〈
 j |TrN (δPα [V̂ (RSH ), ρ̂])|
k〉

+ i

¯

〈

 j

∣∣∣∣∣∣TrN

⎛
⎝δPα

⎡
⎣∑

β

F̂β(RSH )δRβ, ρ̂

⎤
⎦
⎞
⎠
∣∣∣∣∣∣
k

〉

(A10)

− i

2¯

〈

 j

∣∣∣∣∣∣TrN

⎛
⎝δPα

⎡
⎣∑

βγ

K̂ βγ δRβδRγ , ρ̂

⎤
⎦
⎞
⎠
∣∣∣∣∣∣
k

〉

− Fα
SHσ jk

≈ −i

¯
[V̂ , δ P̂α] jk + i

¯

∑
βr

Fβ

jr TrN
(
δPαδRβρred

rk

)

− i

¯

∑
βr

TrN
(
δPαρred

jr δRβ
)
Fβ

rk

− i

2¯

∑
βγ r

K βγ

jr TrN
(
δPαδRβδRγ ρred

rk

)

+ i

2¯

∑
βr

TrN
(
δPαρred

jr δRβδRγ
)
K βγ

rk −Fα
SHσ jk .

(A11)

Using the cyclic invariance of a trace and the identity
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δPαδRβ = 1
2 ([δPα, δRβ ]− + [δPα, δRβ ]+) (A12)

= 1
2

(
¯

i
δαβ + [δPα, δRβ ]+

)
, (A13)

and dropping symmetrized products of second or third order,
we find

d

dt
δPα

jk ≈ −i

¯
[V̂ , δ P̂α] jk + 1

2
(F̂ασ̂ + σ̂ F̂α) jk

− 1

2

∑
β

(K̂ αβδ R̂β + δ R̂β K̂ αβ) jk − Fα
SHσ jk . (A14)

Equations (A7) and (A14) are the desired results, match-
ing Eqs. (24) and (26). For a more general derivation of these
equations, see Ref. 48.

2. Calculation of exact quantum results

For the first three model problems, the exact quantum re-
sults in this paper have been computed in MATLAB by time-
dependent quantum mechanics using a finite one-dimensional
grid and an FFT transformation to represent the momentum
operator. Except for the resonance peak in transmission (at
k ≈ 29) in Fig. 6, empirically the branching ratios did not de-
pend sensitively on the width of the incoming wave packet.
For problems #1 and #2, the width of the incoming wave
packet was chosen as 2 a.u., and for problem #3, the width
was 3 a.u. For problem #3, we were unable to quantify ex-
actly how much bigger the transmission peak should be at
k = 29 a.u. (in the limit of an incoming k-state with infinite
spatial width, i.e., a plane wave): our MATLAB calculations
became prohibitively expensive.64 After diagonalizing the to-
tal Hamiltonian and propagating the wave packet for a small
time �t , we used a masking function along the boundaries
of the grid to eliminate outgoing particle density, while si-
multaneously measuring the distribution of this flux over the
different electronic states. For all cases except the resonant
transmission peak in Fig. 6, we estimate that our branching
ratios are correct to within 1%. More accurate results are cer-
tainly possible (see, e.g., Ref. 65).

For the fourth model problem, where the width of the
incoming wave packet was crucial, we computed the exact
scattering results for a plane wave (aP = 0 in Fig. 8) using
a modified complex Kohn scattering algorithm over a grid in
real space, roughly following Ref. 60.
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