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Communication: The correct interpretation of surface hopping trajectories:
How to calculate electronic properties
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In a recent paper, we presented a road map for how Tully’s fewest switches surface hopping (FSSH)
algorithm can be derived, under certain circumstances, from the mixed quantum-classical Liouville
equation. In this communication, we now demonstrate how this new interpretation of surface hop-
ping can yield significantly enhanced results for electronic properties in nonadiabatic calculations.
Specifically, we calculate diabatic populations for the spin-boson problem using FSSH trajectories.
We show that, for some Hamiltonians, without changing the FSSH algorithm at all but rather sim-
ply reinterpreting the ensemble of surface hopping trajectories, we recover excellent results and
remove any and all ambiguity about the initial condition problem. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4837795]

I. INTRODUCTION

Tully’s fewest switches surface hopping (FSSH) algo-
rithm has been among the most popular approaches for nona-
diabatic electron transfer.1–4 FSSH owes this widespread pop-
ularity to its extreme simplicity and computational efficiency.
However, these benefits come with a cost. There are sev-
eral unresolved questions that result from surface hopping’s
origin as an intuitively derived and empirically justified al-
gorithm. These questions include: (1) Given that trajectories
move along adiabatic surfaces according to the FSSH algo-
rithm, how can diabatic electronic populations be estimated?
(2) More generally, how can we calculate the expectation
value of any electronic operator from a swarm of trajectories
given that there is no full vibronic surface-hopping wavefunc-
tion? (3) What are the correct initial conditions to impose on
FSSH calculations when the electronic state at time zero is
not an adiabatic wavefunction?

In this communication we address these questions from
a new perspective using our recently discovered connection
between FSSH and Kapral and Martens’ mixed quantum-
classical Liouville equation (QCLE).5–10 This FSSH-QCLE
connection provides an unambiguous definition of the FSSH
mixed quantum-classical nuclear-electronic density matrix,
and the latter can be used to calculate any desired electronic
property. In the end, our results will highlight that for some
Hamiltonians, even without decoherence,11 standard FSSH
trajectories can estimate a host of electronic properties quite
well provided one uses the correct interpretation of the FSSH
algorithm.

II. THEORY: BASIS SET CONVERSION

Historically, determining electronic properties from a
swarm of FSSH trajectories has not been simple.12–15 As men-
tioned above, FSSH’s problems stem from the lack of a full
vibronic wavefunction or density matrix for calculating ob-
servable quantities. Moreover, in practice, the calculation of

electronic properties from FSSH trajectories is complicated
because each trajectory carries both an active electronic sur-
face (henceforward, λ) and an electronic wavefunction, effec-
tively double counting the electronic state. If we are interested
in populations on adiabatic surfaces, then a great deal of re-
search has concluded that we should count only the active sur-
face information and disregard the electronic wavefunctions
on each trajectory.1 After all, FSSH trajectories move along
adiabatic surfaces and the active surface data obey detailed
balance approximately, whereas the electronic wavefunctions
can become meaningless at long times.16, 17 That, being said,
one common problem in the quantum dynamics community is
the calculation of diabatic populations. In this paper, we will
explore this problem and present the definitive solution.

As might be expected from our discussion above, two
common and unsatisfying methods exist in the literature
for estimating diabatic populations from a swarm of FSSH
trajectories.13, 14, 18 One method uses exclusively the elec-
tronic wavefunction of each trajectory. The other uses only
the active surface of each trajectory. Each method has its ben-
efits and faults. We review these methods now. Afterward, we
give a third approach that arises as the direct result of the an-
alytical theory in Ref. 19. The practical reader will notice that
this third method coincidentally interpolates between the pre-
vious two approaches and captures the best of both worlds.

Notation. In this article, i, j will represent adiabatic elec-
tronic surfaces, and a will represent a diabatic electronic state.
We always run FSSH trajectories along adiabatic surfaces
with electronic wavefunctions defined by

|ψel〉 =
∑

i

ci |#i〉. (1)

For a diabatic basis {|$a〉} defined by |#i〉=
∑

aUai|$a〉,
the FSSH electronic wavefunction can be written as

|ψel〉 =
∑

a

(
∑

i

Uaici

)

|$a〉 ≡
∑

a

ba|$a〉, (2)
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where U depends on the position R of the surface hopping
trajectory.

A. Method 1: Surfaces

The most straightforward method of converting between
bases uses the active surface. From this framework, a trajec-
tory moving along a given active surface can be considered
to move along one or more diabats according to the diabatic-
adiabatic transformation. In other words, one ignores the elec-
tronic wavefunction completely. Mathematically, for a trajec-
tory moving along active adiabatic surface λ, the probability
of measurement on diabat a is |Uaλ(R)|2 and the average pop-
ulation on a for a swarm of trajectories is

Pa = 1
N

N∑

l

|Uaλl (Rl)|2. (3)

Here, the sum is over N trajectories (labeled by l) with nuclear
position and momentum Rl and Pl and active surface λl.

B. Method 2: Electronic wavevector

An alternate method to calculate diabatic populations is
to use exclusively the electronic wavefunctions of each sur-
face hopping trajectory. Once this choice is made the conver-
sion between bases follows Eq. (2). The probability for one
FSSH trajectory to be measured in diabatic state a is there-
fore |ba|2 = |

∑
iUai(R)ci|2 and the average population on a

for a swarm of N trajectories is

Pa = 1
N

N∑

l

∣∣∣∣∣
∑

i

Uai(Rl)cl
i

∣∣∣∣∣

2

. (4)

Note that the active surface λl does not enter this formulation.

C. Method 3: Mixed quantum-classical density

According to Ref. 19, a rigorous theory of FSSH tra-
jectories can be made by constructing the corresponding
nuclear-electronic density matrix A(R, P). A(R, P) can then be
compared rigorously to the partial Wigner transform (trans-
forming over only nuclear coordinates) of the exact (nuclear
plus electronic) wavefunction. Intuitively, Aii(R, P) should be
the population on adiabat i at position (R, P) in phase space,
and Aij(R, P) should be the transition amplitude between the
nuclear wavefunction on adiabat i and the nuclear wavefunc-
tion on adiabat j at (R, P) in phase space.

With this in mind, according to Ref. 19, the correct on-
diagonal density matrix element for a swarm of FSSH trajec-
tories is defined by the active surface λ:

Aii(R,P ) = 1
N

N∑

l

δ(R − Rl(t))δ(P − P l(t))δi,λl (t). (5)

The off-diagonal components are less straightforward
than the diagonal components, but take the following forms:19

A
(i)
ij (R,P ) = 1

N

N∑

l

δ(R − Rl(t))δ(P − P l(t))δi,λl (t)
σij

l

σii
l
,

(6)

A
(j )
ij (R,P ) = 1

N

N∑

l

δ(R − Rl(t))δ(P − P l(t))δj,λl (t)
σij

l

σjj
l
.

(7)

Here σ ij is the electronic density matrix (σ ij = cicj
∗).

As discussed in Ref. 19, the definitions in Eqs. (6) and
(7) should and would be equal for an improved FSSH al-
gorithm that incorporated decoherence. For standard Tully
FSSH, however, these two different definitions of the off-
diagonal density matrix element may be unequal, and so
one can even consider an average of the two. Thus, besides
Eqs. (6) and (7), in this paper, we will also consider
1
2 (A(i)

ij + A
(j )
ij ) and

Aij (R,P ) = 1
N

N∑

l

δ(R − Rl(t))δ(P − P l(t))σij
l (8)

as two other possible definitions of the off-diagonal ma-
trix element. Equation (8) can be considered the average of
Eqs. (6) and (7) with weights proportional to the active popu-
lations on each adiabat.

Armed with Aij, we can now convert basis easily. For a
density matrix A in the adiabatic basis, the density matrix B
in the diabatic basis is

B(R,P ) = U (R)A(R,P )U †(R), (9)

and the population on diabat a at (R, P) is

Baa =
∑

i

Aii |Uai |2 +
∑

i<j

2Re(UaiAijUaj
∗). (10)

Finally, the total population on diabatic surface a is then
the trace over nuclei. For example, using Eq. (8):

Pa =
∫

dRdPBaa(R,P )

= 1
N




N∑

l

∑

i

|Uai |2δi,λl +
N∑

l

∑

i<j

2Re
(
Uaiσ

l
ijUaj

∗)


 .

(11)

Intuitively, it is now clear that a swarm of FSSH trajectories
on each surface represents a sampling of a classical density;
the resulting trace can then be understood as a Monte Carlo
integral evaluation with the FSSH particle density serving as
the weighting function.

The reader should note that the diabatic populations
in Eq. (11) are not guaranteed to be positive. However,
one should find physically meaningful (positive) populations
when, statistically, the electronic surface populations are con-
sistent with the electronic wavefunctions of each trajectory.

III. RESULTS

A. Spin-boson Hamiltonian

To prove the validity of Eq. (11) above, we now study the
spin-boson Hamiltonian. We will plot the population on one
diabat as a function of time. If we isolate the mode (x) coupled
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to the individual two-level system, the spin-boson Hamilto-
nian is

H = p2

2M
+ 1

2
M'2x2 +

(
λx + ε0

2

)
σz + V σx

+
∑

α

(
πα

2

2mα

+ 1
2
mαωα

2
(

zα − ζα

mαωα
2
x

)2
)

, (12)

where M is the mass, ' is the natural frequency, V is the di-
abatic coupling, ε0 is the driving force, and λ is related to
the reorganization energy Er by λ =

√
ErM'2/2. For our

surface hopping calculation, we take the x coordinate as our
nuclear coordinate, and we take the Pauli matrices to be in
the basis of diabatic electronic states. Using these identifi-
cations, the harmonic bath can be integrated out, and for an
Ohmic spectral density, one finds a simple classical Langevin
force in one dimension with damping parameter γ . Mathe-
matically, if g(ω) is the density of states for the harmonic bath,
γ ≡ πg(ωα)ζ 2

α/
(
2Mmαω2

α

)
is a constant.

We compare our surface-hopping results (one dimen-
sional with friction) versus Ehrenfest (one dimensional
with friction) versus numerically exact QUAPI results.20–22

For the QUAPI (quasi-adiabatic propagator path integral)
method our Hamiltonian corresponds to a spin interacting
with an environment through a Brownian oscillator spectral
density:13, 23, 24

J (ω) = 1
2

Er'
2γω

(ω2 − '2)2 + γ 2ω2
. (13)

To test the validity of Eq. (11), we will look at two different
regions of parameter space: Case A is in between the Redfield
and nonadiabatic Marcus regime (Fig. 1); Case B is in the
nonadiabatic Marcus regime (Fig. 2).

B. Initial conditions

As another test of the approach in Ref. 19, in this com-
munication we choose our reorganization energy and driving
force so that the system is in the barrierless regime (ε0 = Er ).
As such, our initial conditions are clearly not restricted to a
single adiabat. Instead, we must convert our initial electronic
wavefunction from a diabatic basis to an adiabatic basis. We
must also recognize that, correspondingly, some FSSH trajec-
tories will start off on active adiabatic surface 1, while others
will start on active adiabatic surface 2. Finally, for the sur-
face hopping data, we choose entirely classical (Boltzmann)
initial conditions for positions and momenta; the QUAPI data
are sampled from quantum mechanical initial conditions.

C. Case A

For our first model problem we consider the parameter
regime V = ER . In this regime, decoherence is not paramount
and FSSH should give reasonable results. In fact, A-FSSH and
FSSH results are identical. As shown in Fig. 1(a), methods #1
and #2 give nonsensical results, while method #3 works rather
well over all time. As would be expected from Refs. 16 and
17, the surface method (method #1) works at long times, re-
covering detailed balance approximately (as compared with

0

0.2

0.4

0.6

0.8

1

t (au)

  

(a)

 

 

0 1000 2000 3000 4000 5000
−0.2

0

0.2

0.4

0.6

0.8

1

t (au)

<p
op

ul
at

io
n 

on
 d

on
or

 d
ia

ba
t>

(b)

 

 

FSSH Surfaces (Method #1)
FSSH Amplitudes (Method #2)
FSSH Density Matrix (Eq. 11) (Method #3)
Ehrenfest
QUAPI (exact)

FSSH Density Matrix (Eq. 11)
FSSH Density Matrix Surface 1
FSSH Density Matrix Surface 2
FSSH Density Matrix Average
QUAPI (exact)

FIG. 1. (a) Diabatic population as a function of time using the different
basis conversion methods. We compare with the exact QUAPI population
and the Ehrenfest population. (b) Diabatic populations comparing different
possible realizations of method #3. Parameters are: M = 1, ' = 0.021375,
V = 0.00475, Er = 0.00475, ε0 = 0.00475, γ = 0.04275, kT = 0.00095.
Surface hopping and Ehrenfest: 10 000 trajectories with timestep = 0.01.
QUAPI: timestep = 0.2 and .kmax = 9.

the exact QUAPI populations). However, the method is non-
sensical at time t = 0 because transforming between adiabatic
and diabatic representations according to surface is not re-
versible. Thus, the method does not even recover the correct
initial conditions.

Method #2 suffers the opposite problem. Admittedly,
the method incorporates off-diagonal density matrix elements
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FIG. 2. Diabatic population as a function of time using the different basis
conversion methods. We compare with the Marcus and Ehrenfest populations.
(Note: All three methods produce the same results for A-FSSH and meth-
ods #1 and #3 agree for FSSH.) Parameters are: M = 1, ' = 0.00004375,
V = 0.00002, Er = 0.0239, ε0 = 0.0239, γ = 0.00015, kT = 0.00095. 2000
trajectories with timestep = 1.25.
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(and thus is reversible); at short times, the method recovers
the correct oscillatory behavior. However, at long times the
wavefunctions become meaningless and do not recover the
correct asymptotic populations (to match detailed balance).
This agrees with Refs. 16 and 17 as well.

The density matrix method (i.e., method #3) combines
the best of methods #1 and #2, giving nearly the correct popu-
lation over the entire time range. It also outperforms Ehrenfest
in this regime. The small oscillations at long time are likely
due to a lack of decoherence in the FSSH algorithm.

With regards to choice of off-diagonal element, Fig. 1(b)
shows the effects of different choices for A12 (Eqs. (6)–(8)).
From our experience, we believe the method using Eq. (8) is
optimal. Equation (8) should be the most stable since it does
not require a density component in the denominator. Interest-
ingly, the numerical results with A12 from surface 2 show the
best performance here; for the moment, we are unsure why
this is so. Future research might well explore this happen-
stance: is it meaningful or coincidental?

D. Case B

For our second model problem, we provide numerical
data from the nonadiabatic Marcus regime (V % Er ), which
we have studied recently.25 According to Fig. 2, methods #2
and #3 perform at roughly the same level of accuracy. In this
regime, the coupling region is narrow and a single adiabat
corresponds to a single diabat almost everywhere in posi-
tion space—hence basis conversion by surface is almost re-
versible. However, the wavefunction method still cannot re-
cover detailed balance at long times. The Marcus regime also
proves to be a stronger test for Ehrenfest, and the latter does
not recover detailed balance.13, 16, 17

Figure 2 reiterates a point we have made previously:25 the
decoherence problem is significant for FSSH in the nonadia-
batic Marcus regime, where FSSH always overestimates the
transition rate between diabats. To illustrate this fact, we in-
clude data using our augmented A-FSSH dynamical scheme
to incorporate decoherence. Note that while the FSSH ampli-
tudes do not properly obey detailed balance, the A-FSSH am-
plitudes do. The reasoning is simple: decoherence events in
A-FSSH project the wavefunction onto the active surface of
the trajectory and thus restore the internal consistency of the
surface-hopping algorithm. Since the surface data roughly sat-
isfy detailed balance at long times, adding decoherence makes
the wavefunction obey detailed balance as well.

Finally, the reader will note that all three methods (#1,
#2, #3) in Fig. 2 numerically give the same diabatic popula-
tions for A-FSSH. In general, for a Hamiltonian outside the
nonadiabatic Marcus regime, we believe that methods #2 and
#3 would both outperform method #1, if an exact treatment of
decoherence were possible. However, given that all schemes
to incorporate decoherence on top of surface-hopping are nec-
essarily approximate, method #3 is clearly the optimal method

by which one should calculate diabatic electronic properties
in general.

IV. CONCLUSION

In this communication we have shown the correct way
to convert between electronic bases within the context of the
FSSH algorithm. Our method was chosen from our knowl-
edge of the correct mixed quantum-classical density matrix
that corresponds to a swarm of surface hopping trajectories,
as presented in Ref. 19. The results above are strong sup-
porting evidence that the connection (in Ref. 19) between
the mixed quantum-classical Liouville equation dynamics and
FSSH is correct. Perhaps unsurprisingly, we find that the op-
timal means to produce diabatic populations from FSSH tra-
jectories must use both surface and wavefunction information.
We hope that all researchers using FSSH will benefit from this
optimal transformation. More generally, we now believe that
there should be far less ambiguity in the future regarding the
calculation of any and all electronic properties from a swarm
of surface hopping trajectories.
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