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Communication: Standard surface hopping predicts incorrect scaling for
Marcus’ golden-rule rate: The decoherence problem cannot be ignored
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We evaluate the accuracy of Tully’s surface hopping algorithm for the spin-boson model for the
case of a small diabatic coupling parameter (V). We calculate the transition rates between diabatic
surfaces, and we compare our results to the expected Marcus rates. We show that standard surface
hopping yields an incorrect scaling with diabatic coupling (linear in V), which we demonstrate is
due to an incorrect treatment of decoherence. By modifying standard surface hopping to include
decoherence events, we recover the correct scaling (∼V2). © 2011 American Institute of Physics.
[doi:10.1063/1.3663870]

Modeling photo-induced nonadiabatic reactions has be-
come increasingly popular in recent years due to a variety
of interesting possible applications in the fields of alternative
energy and electronics. Although quite a few algorithms ex-
ist for modeling nonadiabatic dynamics,1–3 surface-hopping
methods are arguably the most widely used because they are
inherently simple and computationally efficient.4–7 By treat-
ing the nuclei classically while maintaining the quantum char-
acter of the electrons, surface-hopping algorithms make a rea-
sonable assumption—nuclei are much heavier and, therefore,
behave more classically than electrons—and this assumption
leads to dramatic computational savings.

Even though Tully’s standard fewest switches surface-
hopping (FSSH) method is widely used today, there still
remain open questions as to its overall validity, and new
benchmarking examples are certainly needed. While most
publications have so far focused on calculating detailed bal-
ance properties or inelastic scattering cross sections,8–11 we
will instead address the question of rates,6, 12, 13 which is cru-
cial for modeling photo-induced experiments. In so doing,
we can critically evaluate the long-time behavior of surface-
hopping algorithms, where nuclei visit regions of nonadia-
batic coupling repeatedly and any failures of FSSH should
be obvious. In particular, multiple curve crossings in time
typically lead to an amplification of the decoherence fail-
ures of surface-hopping and a growth in the inconsistency be-
tween electronic amplitudes and the active adiabatic surface
populations.13–16 Thus, if they are present, we might expect to
see evidence of decoherence problems in our results. Lastly,
to make our evaluation even more strenuous, we will focus
on model Hamiltonians where the diabatic coupling is small
and the adiabatic basis may not be the most natural. Because
FSSH is usually propagated on adiabatic surfaces, this will
further test the limits of the standard Tully algorithm.

Unfortunately, there are few exact quantum results we
can compare against when evaluating nonadiabatic rates from
surface-hopping. In the case of small diabatic couplings, how-
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ever, the essential result is Marcus theory,17 whose predic-
tions have been verified experimentally many times for cases
of electron transfer. In this communication, our goal is very
simple: to recover Marcus theory using surface-hopping ap-
proaches applied to the spin-boson model. The spin-boson
model has been used often in the past for studying coupled di-
abatic surfaces (e.g., Refs. 6,12,18–21) and, through perturba-
tion theory on a small diabatic coupling V, one can derive ana-
lytically the celebrated high-temperature Marcus expression22

k = 2π |V |2

¯
√

4πErkT
exp

(
− (Er − ε0)2

4ErkT

)
. (1)

Here, Er is the reorganization energy, ε0 is the energy dif-
ference between the minima of the diabatic states (i.e., the
driving force), and kT is the temperature. For our purposes,
Eq. (1) has two crucial features: (i) The expected transition
rate is proportional to the square of the diabatic coupling |V|2;
(ii) as a function of ε0, the expected rate should be peaked
when the driving force equals the reorganization energy.

In seeking to match Marcus theory (Eq. (1)), we will
show below that standard FSSH dynamics fails qualitatively.
Although FSSH dynamics do correctly predict a peak in rate
as a function of driving ε0, our striking conclusion is that the
FSSH algorithm does not recover the correct scaling (in V);
FSSH rates scale as V instead of V2. Moving forward, we
will invoke the well-known decoherence approach of Rossky
and co-workers to collapse the electronic amplitude when
appropriate,14, 15, 23–39 and having done so, we will show that
one now recovers the correct V2 scaling. Thus, this work
highlights the true significance of the decoherence problem:
surface-hopping cannot recover the Marcus rates of the sim-
plest possible nonadiabatic system without an adjustment for
decoherence. With this correction, however, it does seem to
work well. The implications of these results are profound and
will be discussed in the final section.

Methods: We calculated transition rates between the left
and right diabatic harmonic wells of the spin-boson model
using standard Tully surface-hopping.4 In the relevant basis
for transitions, the diabatic basis {|#l〉, |#r〉}, the spin-boson
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Hamiltonian is

H =
( 1

2mω2x2 + Mx V

V 1
2mω2x2 − Mx − ε0

)
, (2)

where m is the mass of the particle and M can be expressed in
terms of the reorganization energy as M =

√
Ermω2/2.

In order to follow the standard Tully algorithm, carrying
out all surface-hopping dynamics in an adiabatic basis, we
diagonalized Eq. (2) giving the adiabatic energy surfaces

E1,2(x) = 1
2
mω2x2 − ε0

2
∓

√(ε0

2
+ Mx

)2
+ V 2 (3)

with E1 taking the top (i.e., minus) sign and the derivative
coupling

d12(R) = 1
2

MV

(Mx + ε0/2)2 + V 2
. (4)

The eigenvectors of the Hamiltonian (2) give the adia-
batic states in terms of the original diabatic states

|%i(x)〉 = fi(x)|#l〉 + gi(x)|#r〉 (5)

for i = 1 or i = 2, where

f1,2(x) =
√

1
2

∓ 1
2

Mx + ε0/2
√

(Mx + ε0/2)2 + V 2
, (6)

g1,2(x) = ∓
√

1
2

± 1
2

Mx + ε0/2
√

(Mx + ε0/2)2 + V 2
. (7)

For this problem, we were interested in the transition
rates between and, therefore, populations on diabatic states
rather than adiabatic states. Thus, even though all calculations
were carried out in an adiabatic basis, it was necessary to con-
vert a trajectory on one adiabatic surface into a probability of
being on one of the diabatic surfaces. To do this, we used the
coefficients fi(x) and gi(x) together with the following inter-
pretation: if one is moving along the bottom (active) adiabatic
surface corresponding to |%1(x)〉, we assume that the proba-
bility of being on the left diabat is |f1(x)|2 and the probability
of being on the right is |g1(x)|2. The probabilities are set anal-
ogously for the upper adiabat.

Contact with a thermal bath was modeled by adding
a random force ξ and friction term γ yielding a form
of Langevin dynamics, following the work of Tully and
Beeman.40, 41 The nuclear trajectories move on the adiabatic
surfaces given by Eq. (3) with the additional forces due to
the bath. The total force on the nuclear degree of freedom is,
therefore,

F = −dEi(x)
dx

− γp + ξ, (8)

where i is the label of the active surface that the trajectory
is moving on and ξ is a Markovian Gaussian random force
with standard distribution σ =

√
2γmkT/dt (with time step

dt). For the discrete integration of these equations of motion,
the Markov property means that the random force at each time
step is uncorrelated with the random force at the previous time
step.

For our initial conditions, we chose a Boltzmann distribu-
tion of nuclear positions and momenta in the left diabatic well,
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FIG. 1. Sample of the ensemble averaged population data as a function of
time and exponential fit, 〈pop(t)〉 = a exp (−kt) + b.

with the corresponding electronic amplitude, and we sampled
an average of 5000 distinct FSSH trajectories each with a time
step of dt = 2.5 (in atomic units). As a function of time, we
plotted both (i) the average population on the right diabatic
surface and (ii) the average trajectory position; this informa-
tion was then fit to an exponential function to determine a
transition rate (see Fig. 1). Some of the data showed transient
non-exponential behavior at short times, but such phenom-
ena were not significant enough to substantially influence the
rates. As a rule, we found the same rate according to aver-
age population and average position to within our statistical
noise. As a result, we show below only the rates from average
population.

For the surface-hopping trajectories with decoherence,
we collapsed the electronic wave function whenever the tra-
jectory crossed the minimum of a diabatic well while mov-
ing away from the crossing point. More explicitly, for the
normal Marcus regime each time the position of a trajectory
crossed x = ±M/mω2 while moving on the lower adiabatic
surface headed away from the crossing region, the electronic

wavevector was set to
( 1

0
)

putting all the probability density

on the lower surface. For the inverted regime, simple col-
lapses occurred on the upper surface for x = −M/mω2 and
the lower surface for x = M/mω2. This collapsing criterion
is closely related to the ideas of Fang and Hammes-Schiffer.14

The reasoning is quite sensible: once a trajectory is far from
the crossing region, wave packets on the upper and lower sur-
faces should separate. Then there is no longer a possibility
to hop, and the particle should “forget” that it was ever in
the crossing region (to be discussed more later). More elab-
orate approaches for decoherence have been proposed (e.g.,
Ref. 15, and see references therein). The relevant parameter
ranges that were used are given in Table I, all in atomic units,
adapted from Hammes-Schiffer.6 Results are independent of
mass (we chose m = 1).

Results: The results of our calculations are shown in
Figs. 2 and 3. In Fig. 2, we plot the rate as a function of driv-
ing force ε0 for a variety of different frictional (γ ) values.
In many respects, this figure suggests that surface-hopping
does quite well. Most importantly, FSSH correctly predicts
a peak in the rate as a function of ε0, and that peak is cen-
tered at ε0 = Er, as it should be. Furthermore, from our data it
would appear that, as a function of γ , our calculations can be
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TABLE I. Parameters and ranges used for FSSH (atomic units, ¯ = 1).

Parameter Range

Er 2.39 × 10−2

kT 9.5 × 10−4

ε0 1.5 × 10−2 – 3.0 × 10−2

V 1.49 × 10−5 – 2.28 × 10−4

ω 3.5 × 10−4

γ 1.875 × 10−5 – 2.4 × 10−3

interpreted in terms of Kramer’s theory. According to
Kramer’s theory, the transition rate should be small for small
γ in the under-damped limit, increase and level off at the tran-
sition state regime for moderate γ , and then decrease in the
over-damped limit as γ gets very large.22 Fig. 2 shows that is
approximately what we find (at least near the top of the curve)
using the standard FSSH algorithm; around γ = 0.0006, our
system is in the transition state regime, and the rate is inde-
pendent of γ just as in Marcus theory. As a side note, in the
under-damped limit, the peak in ε0 shifts to a value less than
Er.

One striking conclusion of Fig. 2 is that standard FSSH
grossly overestimates the transition rate in this problem. To
understand why this is so, we studied the effect of changing
V. In Fig. 3, we show the surprising fact that, for small V,
FSSH predicts the incorrect scaling as a function of V. More
specifically, FSSH predicts the transition rate should scale as
V rather than V2. In the same figure, we also show that adding
decoherence by collapsing the wavefunction recovers V2 de-
pendence for small V. For the larger values of V both surface-
hopping methods give a slope of around 1, which corresponds
to linear scaling in V. Thus, for the algorithm with decoher-
ence, there is a clear transition from adiabatic to diabatic pa-
rameter regimes, and this transition moves the transition rate
from V to V2 scaling. For the standard FSSH, however, the
scaling remains linear for the our entire range of V. These
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FIG. 2. Rates for various values of friction coefficient γ calculated using
standard FSSH. Note that as γ is decreased from the over-damped limit the
rates increase and level off. This γ regime gives the standard transition state
theory rates. As γ is decreased further the rates decline again reaching the
under-damped limit. V = 5 × 10−5.
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FIG. 3. Log-log (base e) plot of the rate k as a function of diabatic coupling
V for ε0 = 0.015 in the normal Marcus regime. A plot for ε0 = 0.033 in the
inverted regime is nearly identical. The Marcus expression is expected to fail
for large V and is only plotted for the regime in which we expect it to hold. γ
= 0.0024, slightly in the over-damped regime.

scaling arguments hold in the transition state regime and the
over-damped regime (we have not checked the under-damped
regime).

According to Fig. 2, FSSH predicts the qualitatively cor-
rect form for the rate constant as a function of driving force,
ε0, with a turnover near ε0 = Er. This is an encouraging devel-
opment, as it was shown recently that ring polymer molecular
dynamics does not predict an inverted regime.42 To explain
why FSSH succeeds in this regard, consider the following.
Because the FSSH algorithm propagates all dynamics in an
adiabatic basis, in either the normal or the inverted regime
there is a barrier to move from the left to the right well. Ac-
cordingly, the decay rate should be nearly optimized when the
avoided crossing is at the bottom of the diabatic curve on the
left (i.e., the barrierless regime). In this sense, the FSSH algo-
rithm reproduces the correct physical picture.

Nevertheless, Fig. 3 shows clearly that FSSH predicts
the incorrect scaling as a function V and that this failure re-
sults from a lack of decoherence. The conceptual error in the
FSSH model is straightforward here. When a wave packet
approaches the coupling region, it bifurcates. One daughter
wave packet relaxes into each diabatic well, and these daugh-
ter wave packets behave independently and no longer interact
with one another. But in standard FSSH, even for a trajec-
tory that should represent one of a pair of separating daugh-
ter wave packets, an individual FSSH trajectory is never ad-
justed so as to account for this separation in space. Instead,
each FSSH trajectory has an infinite memory, leading to sce-
narios where FSSH is effectively modeling separated wave
packets as coherent superpositions. Thus, the next time a par-
ticle approaches an avoided crossing, one will find incorrect
branching ratios. To correct FSSH, it is necessary to collapse
the electronic amplitude, so that when the corresponding two
wave packets are far apart, each trajectory has an amplitude
that matches the active surface.

To understand the problem more mathematically, con-
sider that Marcus theory can be derived by assuming that
we have a classical oscillator on the left diabatic surface that
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approaches an avoided crossing with some frequency, and
with each crossing event, the particle changes diabatic sur-
faces according to the Landau-Zener transition probability
(which scales as V2).22 From this valid point of view, each
crossing event is statistically independent and one finds a
rate proportional to V2. When performing FSSH dynamics,
however, each trajectory moves through the avoided crossing
several times before relaxing into the right well. After each
pass through the coupling region, the electronic amplitude be-
comes more and more nonsensical and inconsistent, and the
probability to hop begins scaling as V. To show this, suppose
we start on the left electronic state. Up to some unknown
phases, for each crossing event, the electronic propagator is

U ≈
(

1 −θV

θV 1

)
, (9)

where θ is a proportionality constant given by Landau-Zener.
Specifically, |θ |2 = 2π/¯ẋ|Fb − Fa|, where Fa and Fb are the
forces from the two diabatic surfaces and the expression is
evaluated at the crossing point. On the one hand, if the initial

wave packet is
( 1

0
)
, the final electronic state is ≈

( 1
θV

)
, so

the change in population on the upper surface is θ2V2. On the

other hand, if the initial wave packet is
(α

β

)
, the final elec-

tronic state is ≈
(

α − βθV

β + αθV

)
, so that the change in popula-

tion on the upper surface is |β + αθV|2 − |β|2 ∼ V. Thus,
the cumulative effect of this incorrect electronic amplitude is
that the transition rates increase as V, ultimately leading to an
incorrect rate constant.

To conclude, our results highlight the importance of
adding decoherence to surface hopping algorithms. With-
out decoherence, one can calculate erroneously large decay
rates for photo-excited molecules (∼V instead of ∼V2 scal-
ing). With decoherence, however, we have shown that one
recovers the correct scaling. Thus, our research emphasizes
the urgent need for efficient methods for incorporating de-
coherence within FSSH trajectories. Unfortunately, the sim-
ple collapsing criterion discussed above is not usually ap-
plicable because (i) it cannot be used near the peak of the
Marcus curve ε0 = Er, where the avoided crossing region
is near the minimum of one diabatic curve; (ii) this criterion
is only well suited for one-dimensional model Hamiltonians
where we can identify unique minima and crossing points.
More generally, we introduced recently an augmented-FSSH
algorithm (A-FSSH) (Ref. 15) for treating decoherence with-
out any parameters in the context of FSSH trajectories, and
our next project will be to test the A-FSSH algorithm in the
context of this spin-boson problem. In the end, the spin-boson
problem is clearly a fertile test system for nonadiabatic algo-
rithms, and in an upcoming paper, we will examine the com-
plicated relationship between solvent effects, nuclear frequen-
cies, surface hops, and decoherence in more detail including
the shifts in Fig. 2. For now, this much is already clear: with-
out correctly treating decoherence, computational chemists
should be very wary when modeling nonadiabatic rate con-

stants using the standard FSSH algorithm in the limit of curve
crossings with small diabatic couplings.
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