We simulate vibrational strong coupling (VSC) and vibrational ultrastrong coupling (V-USC) for liquid water with classical molecular dynamics simulations. When the cavity modes are resonantly coupled to the O–H stretch mode of liquid water, the infrared spectrum shows asymmetric Rabi splitting. The lower polariton (LP) may be suppressed or enhanced relative to the upper polariton (UP) depending on the frequency of the cavity mode. Moreover, although the static properties and the translational diffusion of water are not changed under VSC or V-USC, we do find the modification of the orientational autocorrelation function of H₂O molecules especially under V-USC, which could play a role in ground-state chemistry.

vibrational strong coupling | ultrastrong coupling | molecular dynamics | liquid water

Strong light-matter interactions between a vibrational mode of molecules and a cavity mode have attracted great attention of late (1). The signature of strong interactions is the formation of lower polariton (LP) and upper polariton (UP), which are manifested in the Rabi splitting of a vibrational peak in the molecular infrared (IR) spectrum. According to the normalized ratio (η) between the Rabi splitting frequency (Ω_N) and the original vibrational frequency (ω_0), or $\eta=\Omega_N/2\omega_0$, one often classifies $0<\eta<0.1$ as vibrational strong coupling (VSC) and $\eta>0.1$ as vibrational ultrastrong coupling (V-USC) (2). The investigation of VSC or V-USC in liquid phase was initially suggested by Ebbesen and coworkers (3–5), and it was later found experimentally that VSC or V-USC can modify the ground-state chemical reaction rates of molecules even without external pumping (6). This exotic catalytic effect provides a brand new way to control chemical reactions remotely. As such, there has been a recent push to understand the origins and implications of VSC and V-USC.

While the experimental side has focused on the search for large catalytic effects (7–10) as well as understanding polariton relaxation dynamics through two-dimensional (2D)-IR spectroscopy (11, 12), on the theoretical side, the nature of VSC and V-USC remains obscure. On the one hand, Rabi splitting can be easily modeled by, for example, diagonalizing a model Hamiltonian in the singly excited manifold (13–15) or solving equations of motion classically for a set of one-dimensional (1D) harmonic oscillators (16, 17). Although such simplified models are adequate enough for studying Rabi splitting qualitatively by fitting experimental parameters, these models usually ignore translation, rotation, and collision, as well as the intricate structure of molecular motion, all of which are crucial for determining the dynamic properties of molecules. Therefore, explicit cavity MD simulations become a more appropriate approach for studying all dynamic properties. Moreover, even though one can find a Rabi splitting from 1D models, performing cavity MD simulations is also very helpful for providing more details about the IR spectrum, and this approach can be used to benchmark the validity of 1D models under various conditions.

There have been a few flavors of cavity MD schemes for electronic strong coupling (29–31). For example, Luk et al. (30) applied multiscale quantum mechanics/molecular mechanics simulation for studying the dynamics of electronic polaritons for Rhodamine molecules. By contrast, MD simulations for VSC and V-USC, to our best knowledge, have not been extensively studied before. Therefore, below we will first establish a framework for cavity MD simulation including implementation of strong vibrational coupling. The first step toward proving the above hypothesis is to ascertain whether or not any dynamical property of molecules is actually changed for a realistic experiment, a goal that forms the central objective of this manuscript. In order to investigate whether such modification occurs, below we will model VSC and V-USC using cavity molecular dynamics (MD) simulation, where the nuclei are evolved under a realistic electronic ground-state potential surface. Such an approach is an extension of the usual simplified 1D models where the matter side is evolved as two-level systems (24–26) or coupled harmonic oscillators (16, 17, 27, 28). Although such simplified models are accurate enough for studying Rabi splitting qualitatively by fitting experimental parameters, these models usually ignore translation, rotation, and collision, as well as the intricate structure of molecular motion, all of which are crucial for determining the dynamic properties of molecules. Therefore, explicit cavity MD simulations become a more appropriate approach for studying all dynamic properties. Moreover, even though one can find a Rabi splitting from 1D models, performing cavity MD simulations is also very helpful for providing more details about the IR spectrum, and this approach can be used to benchmark the validity of 1D models under various conditions.

While the experimental side has focused on the search for large catalytic effects (7–10) as well as understanding polariton relaxation dynamics through two-dimensional (2D)-IR spectroscopy (11, 12), on the theoretical side, the nature of VSC and V-USC remains obscure. On the one hand, Rabi splitting can be easily modeled by, for example, diagonalizing a model Hamiltonian in the singly excited manifold (13–15) or solving equations of motion classically for a set of one-dimensional (1D) harmonic oscillators (16, 17). Although such simplified models are adequate enough for studying Rabi splitting qualitatively by fitting experimental parameters, these models usually ignore translation, rotation, and collision, as well as the intricate structure of molecular motion, all of which are crucial for determining the dynamic properties of molecules. Therefore, explicit cavity MD simulations become a more appropriate approach for studying all dynamic properties. Moreover, even though one can find a Rabi splitting from 1D models, performing cavity MD simulations is also very helpful for providing more details about the IR spectrum, and this approach can be used to benchmark the validity of 1D models under various conditions.

There have been a few flavors of cavity MD schemes for electronic strong coupling (29–31). For example, Luk et al. (30) applied multiscale quantum mechanics/molecular mechanics simulation for studying the dynamics of electronic polaritons for Rhodamine molecules. By contrast, MD simulations for VSC and V-USC, to our best knowledge, have not been extensively studied before. Therefore, below we will first establish a framework for cavity MD simulation including implementation of strong vibrational coupling. The first step toward proving the above hypothesis is to ascertain whether or not any dynamical property of molecules is actually changed for a realistic experiment, a goal that forms the central objective of this manuscript. In order to investigate whether such modification occurs, below we will model VSC and V-USC using cavity molecular dynamics (MD) simulation, where the nuclei are evolved under a realistic electronic ground-state potential surface. Such an approach is an extension of the usual simplified 1D models where the matter side is evolved as two-level systems (24–26) or coupled harmonic oscillators (16, 17, 27, 28). Although such simplified models are adequate enough for studying Rabi splitting qualitatively by fitting experimental parameters, these models usually ignore translation, rotation, and collision, as well as the intricate structure of molecular motion, all of which are crucial for determining the dynamic properties of molecules. Therefore, explicit cavity MD simulations become a more appropriate approach for studying all dynamic properties. Moreover, even though one can find a Rabi splitting from 1D models, performing cavity MD simulations is also very helpful for providing more details about the IR spectrum, and this approach can be used to benchmark the validity of 1D models under various conditions.
details, and second, we will investigate the Rabi splitting and the dynamical properties of liquid water.

The motivation for studying liquid water is twofold. 1) Among common liquids, water shows strong Rabi splitting and strong catalytic effects under VSC or V-USC (8, 10, 32). More interesting, when the cavity mode is resonantly coupled to the O–H stretch mode, experiments (10) have observed that the intensity of the vibrational LP peak is much smaller than the UP peak in the IR spectrum, an observation that cannot be accounted for by standard strong coupling models. 2) MD simulations of water outside the cavity have been extensively studied, and good agreement with experiments can be achieved (33–35). Extending such simulations to include coupling to cavity modes is expected to show the cavity-induced spectral changes and provides numbers that are directly comparable with experimental results.

General Theory of V-USC

The full-quantum Hamiltonian for light-matter interactions reads (21, 36)

$$\hat{H}_{\text{QED}} = \hat{H}_n + \hat{H}_F.$$ \hspace{1cm} (1a)

Here, QED denotes quantum electrodynamics, \(\hat{H}_n\) denotes the conventional (kinetic + potential) Hamiltonian for the molecular system

$$\hat{H}_n = \sum_{\ell} \frac{\hat{p}_\ell^2}{2m_\ell} + \hat{V}_{\text{Coul}} (\{\hat{r}_\ell\}),$$ \hspace{1cm} (1b)

where \(m_\ell, \hat{p}_\ell, \hat{r}_\ell\) denote the mass, momentum operator, and position operator for the \(\ell\)th particle (nucleus or electron), respectively, and \(\hat{V}_{\text{Coul}} (\{\hat{r}_\ell\})\) denotes the Coulombic interaction operator between all nuclei and electrons. Under the long-wave approximation, the field-related Hamiltonian \(\hat{H}_F\) reads

$$\hat{H}_F = \sum_{k, \lambda} \frac{\omega_{k, \lambda}^2}{2} \hat{q}_{k, \lambda}^2 + \frac{1}{2} \left(\hat{p}_{k, \lambda} - \frac{1}{\sqrt{\Omega_{\text{opt}}} \mu_\lambda} \hat{\mu}_k \cdot \xi_{k, \lambda} \right)^2,$$ \hspace{1cm} (1c)

where \(\omega_{k, \lambda}, \hat{q}_{k, \lambda},\) and \(\hat{p}_{k, \lambda}\) denote the frequency, position operator, and momentum operator, respectively, for a photon with wave vector \(\mathbf{k}\) and polarization direction \(\xi_{k, \lambda}\), and the index \(\lambda = 1, 2\) denotes the two polarization directions that satisfy \(\mathbf{k} \cdot \xi_{k, \lambda} = 0\). In free space, the dispersion relation gives \(\omega_{k, \lambda} = c |\mathbf{k}| = ck. e_\ell\) and \(\Omega\) denote the vacuum permittivity and the cavity volume. \(\hat{\mu}_k\) denotes the dipole operator for the whole molecular system:

$$\hat{\mu}_k = \sum_{\alpha} Z_{\alpha} \hat{r}_{\alpha},$$

where \(\alpha\) denotes the electron charge and \(Z_{\alpha}\) the charge for the \(\alpha\)th nucleus (nucleus or electron). \(\hat{\mu}_k\) can also be grouped into a summation of spherical dipole moments (indexed by \(n\)):

$$\hat{\mu}_k = \sum_{n=1}^{N} \mu_n; \quad \mu_n = \sum_{\alpha} Z_{\alpha} \hat{r}_{\alpha}.$$

Note that the self-dipole term in Eq. 1c (i.e., the \(\mu_k^2\) term in the expanded square) is of vital importance in describing ultrastrong coupling (USC) and is needed to render the nuclear motion stable; refs. 37–39 have details. Because we will not neglect \(\mu_k^2\) below, our simulation is valid for both USC and V-USC.

When the cavity mode frequency is within the timescale of the nuclear dynamics, the Born–Oppenheimer approximation implies that electrons stay in the ground state. Therefore, we will project the quantum Hamiltonian Eq. 1 onto the electronic ground state, \(\hat{H}_{\text{QED}} = \langle \Psi_G | \hat{H}_{\text{QED}} | \Psi_G \rangle\), where \(| \Psi_G \rangle\) denotes the electronic ground state for the whole molecular system. Furthermore, under the Hartree approximation, \(| \Psi_G \rangle\) can be approximated as a product of the electronic ground states for individual molecules:

$$| \Psi_G \rangle = \prod_{\alpha=1}^{N} | \psi_{\alpha} \rangle.$$

After such a projection on the electronic ground state, the Hamiltonian Eq. 1 reduces to

$$\hat{H}_{\text{QED}} = \hat{H}_n^G + \hat{H}_F^G.$$ \hspace{1cm} (2a)

Here, the ground-state molecular Hamiltonian \(\hat{H}_n^G = \langle \Psi_G | \hat{H}_n | \Psi_G \rangle\) depends on the nuclear degrees of freedom only and can be expressed as

$$\hat{H}_n^G = \sum_{n=1}^{N} \left(\sum_{\ell \in \Omega_n} \frac{\hat{p}_{k, \lambda}^2}{2m_{\ell}} + \hat{V}_F^{(n)} (\{\hat{R}_{\alpha}\}) \right) + \sum_{n=1}^{N} \sum_{\ell, n \neq \ell} \hat{V}_{\text{inter}}^{(n)},$$ \hspace{1cm} (2b)

where the capital letters \(\mathbf{P}_{\alpha}, \mathbf{R}_{\alpha},\) and \(M_{\alpha}\) denote the momentum, position operator, and mass, respectively, for the \(\alpha\)th nucleus in molecule \(n\); \(V_F^{(n)}\) denotes the intramolecular potential for molecule \(n\); and \(V_{\text{inter}}^{(n)}\) denotes the intermolecular interactions between molecule \(n\) and \(l\). The field-related Hamiltonian becomes (21)

$$\hat{H}_F^G = \sum_{k, \lambda} \frac{\omega_{k, \lambda}^2}{2} \hat{q}_{k, \lambda}^2 + \frac{1}{2} \left(\hat{p}_{k, \lambda} - \sum_{n=1}^{N} \frac{1}{\sqrt{\Omega_{\text{opt}}} \mu_n} \hat{d}_{n, \lambda} \right)^2 + \sum_{k, \lambda, \lambda'} \sum_{n=1}^{N} \frac{1}{2\Omega_{\text{opt}}} \langle \psi_{\alpha} | \hat{d}_{n, \lambda}^* \hat{d}_{n, \lambda'} | \psi_{\alpha} \rangle,$$ \hspace{1cm} (2c)

where we define \(\hat{d}_{n, \lambda} = \langle \psi_{\alpha} | \mu_{n} | \psi_{\alpha} \rangle \) and \(\hat{d}_{n, \lambda} = \langle \psi_{\alpha} | \mu_{n} | \psi_{\alpha} \rangle \). Note that, since Coulombic interactions are modified by proximity to dielectric boundaries in the cavity, the intramolecular interactions \(V_F^{(n)}\) in Eq. 2b may differ from the free-space form (40, 41). However, as we have argued before (21), for standard VSC setups with a cavity length on the order of micrometers, \(V_{\text{inter}}^{(n)}\) should be nearly identical to those in free space. (See ref. 21 for a brief discussion of the inconsistency between Eq. 2 and causality.) Similarly, on the last line in Eq. 2c, the self-dipole fluctuation term \(\sum_{k, \lambda} \langle \psi_{\alpha} | \hat{d}_{n, \lambda}^* \hat{d}_{n, \lambda} | \psi_{\alpha} \rangle\) denotes the cavity modification of the single-molecule potential, should also be very small for standard VSC setups where micrometer-length cavities are used. Therefore, in what follows, we will assume that \(V_{\text{inter}}^{(n)}\) takes the free-space form and also neglects the self-dipole fluctuation term. However, we emphasize that, for smaller cavities, both the change of intermolecular interactions and the self-dipole fluctuation may play an important role in ground-state chemistry as already discussed in different contexts (18, 29, 38), a fact that needs further investigation.

In MD simulations, a standard potential is a function of positions only. In Eq. 2c, however, the momenta of photons are coupled directly to the molecular dipole moments (which are a function of the nuclear positions of the molecules). However, since photons are harmonic oscillators, we may exchange the momentum and position of each photon, so that Eq. 2c can be rewritten as

$$\hat{H}_F^G = \sum_{k, \lambda} \frac{\hat{q}_{k, \lambda}^2}{2m_{\ell}} + \frac{1}{2} m_{\ell} \omega_{k, \lambda}^2 \left(\hat{q}_{k, \lambda} + \sum_{n=1}^{N} \frac{\hat{d}_{n, \lambda}}{\sqrt{\Omega_{\text{opt}} m_{\ell}}} \right)^2.$$ \hspace{1cm} (3)

Here, to be compatible with standard MD simulations (which requires the information of mass for particles), an auxiliary mass \(m_{\ell, \lambda}\) for each photon is also introduced: \(\hat{p}_{k, \lambda} = \hat{\mu}_k \sqrt{m_{\ell, \lambda}}\) and \(\hat{q}_{k, \lambda} = \sqrt{m_{\ell, \lambda}} \hat{q}_{k, \lambda}\). Note that the auxiliary mass of photon does not alter any dynamics and serves only as a convenient notation for further MD treatment.

Classical MD

The quantum Hamiltonian in Eq. 3, although depending only on the nuclear and photonic degrees of freedom, is still too
expensive to evolve exactly. The simplest approximation we can make is the classical approximation (i.e., all quantum operators are mapped to the corresponding classical observables). After applying the periodic boundary condition for the molecules, the equations of motion for the coupled nuclei–photonic system become (SI Appendix, section 1)

\[
M_{nj} \ddot{r}_{nj} = F^{(s)}_{nj} - \sum_{k \neq j} \left(\frac{q_{k \lambda}}{m_k \omega_k^2} \sum_{l=1}^{N_{sub}} d_{lj} \right) \frac{\partial d_{lj}}{\partial r_{nj}}
\]

\[
m_k \omega_k^2 q_{k \lambda} = -m_k \omega_k^2 q_{k \lambda} - \sum_{n=1}^{N_{sub}} \frac{d_{nj}}{\partial \dot{r}_{nj}}
\]

Here, \(F^{(s)}_{nj} = -\partial V^{(s)} / \partial \dot{r}_{nj} - \sum_{i \neq j} \partial V_{\text{inter}}^{(s)} / \partial \dot{r}_{nj} \) denotes the cavity-free force on each nuclei. We have defined \(q_{kj} = q_{kj} / \sqrt{N_{\text{cell}}} \) and the effective coupling strength \(\tilde{\varepsilon}_{kj} = \sqrt{N_{\text{cell}} m_k \omega_k^2 \lambda / \Omega_0} \), where \(N_{\text{cell}} \) denotes the number of the periodic simulation cells for \(H_2O \) molecules. \(N_{sub} \) denotes the number of molecules in a single simulation cell, and the total number of molecules is \(N = N_{sub} N_{\text{cell}} \). More details on implementations and simulations are explained in Materials and Methods and SI Appendix.

Results

Asymmetric Rabi Splitting. The signature of VSC is the collective Rabi splitting in the IR spectrum. In our MD simulations, the IR spectrum is calculated by linear response theory. For isotropic liquids, the absorption coefficient \(\alpha(\omega) \) is expressed as the Fourier transform of the autocorrelation function of the total dipole moment \(\mu_s \) (42–45):

\[
n(\omega)\alpha(\omega) = \frac{\pi \beta \omega^2}{3\epsilon_0 V c} \int_{-\infty}^{+\infty} dt e^{-i\omega t} (\mu_s(0)\mu_s(t)).
\]

Here, \(n(\omega) \) denotes the refractive index, and \(V \) denotes the volume of the system (i.e., the simulation cell). The factor \(\omega^2 \) arises from the energy of the photon that was absorbed by the liquid [this expression reflects one of several suggestions that were made for a correction factor that relates the quantum time-correlation function to its classical counterparts (43)]. SI Appendix, section 1 shows calculation of \(\mu_s \). For VSC and V-USC experiments, however, because the experimental setups usually detect an IR spectrum by sending light along the cavity direction (which means the \(k \) direction of light is along the \(z \) axis) (32), we need to modify the above equation to

\[
n(\omega)\alpha(\omega) = \frac{\pi \beta \omega^2}{2\epsilon_0 V c} \int_{-\infty}^{+\infty} dt e^{-i\omega t} \times \sum_{i=x,y} (\mu_s(0) \cdot e_i)(\mu_s(t) \cdot e_i),
\]

where \(e_i \) denotes the unit vector along direction \(i = x, y \). Eq. 6 states that the average is performed only along the polarization directions of the detecting signal (i.e., the \(x \) and \(y \) directions here). When the incident light is unpolarized, these two directions are of course equivalent.

Fig. 1A plots the simulated IR spectrum of liquid water outside the cavity. The O–H stretch peaks around \(\sim 3550 \text{ cm}^{-1} \), which is slightly different from experiment \((\sim 3400 \text{ cm}^{-1}) \). Note that a more accurate O–H stretch peak can be simulated by performing path-integral calculations instead of a classical simulation (34).

For the case that the frequency of the two photon modes (with polarization directions perpendicular to the cavity direction) are both set to be at resonance with the O–H stretch (3550 cm\(^{-1}\)), Fig. 1B–D plots the simulated IR spectrum; the effective coupling strength \(\tilde{\varepsilon} \) is set as \(2 \times 10^{-7}, 4 \times 10^{-7}, 6 \times 10^{-7} \), and \(8 \times 10^{-7} \) a.u. (atomic units), respectively. Clearly, when the cavity modes are coupled to the \(H_2O \) molecules, the broad O–H stretch peak is split into a pair of narrower LP and UP peaks. This result agrees with the previous theoretical and experimental work that the inhomogeneous broadening of the vibrational peak does not lead to the broadening of the polariton peaks (46, 47). More interestingly, our simulation results also suggest that the UP and LP peaks can be largely asymmetric especially when \(\tilde{\varepsilon} \) is large, which agrees with experimental findings at least qualitatively (10).

In Fig. 2A, we plot the Rabi splitting frequency (the difference between the UP and LP frequencies or \(\omega_+ - \omega_- \)) as a function of \(\tilde{\varepsilon} \). The simulation data (black triangles) can be fit with a linear ansatz (gray line) very well. As mentioned above, because \(\tilde{\varepsilon} = \sqrt{N_\text{cell} \varepsilon} \propto \sqrt{N} \). Fig. 2A demonstrates that the Rabi splitting is proportional to the square root of the total number of molecules, which agrees with theoretical expectation and experimental observation (32, 48):

\[
\omega_+ - \omega_- = \Omega_N \equiv 2g_0 \sqrt{N},
\]

where \(g_0 \) denotes the coupling constant between a single molecule and the photon mode.

Of particular interest is the asymmetric nature of the LP and UP: this asymmetry is manifest in two aspects. As shown in Fig. 2 B and C, both the polarization frequencies and the integrated peak areas of the LP (blue stars) and UP (red circles) show asymmetric scaling as a function of the normalized Rabi frequency \(\Omega_N / 2 \omega_0 \), where \(\omega_0 \) is taken from Fig. 2A), especially in the V-USC limit (the red-shadowed region). Note that the standard treatment of collective Rabi splitting does not account for this asymmetry, and the observation of the suppression (or enhancement) of the LP (or the UP) in ref. 10 was explained by the higher absorption of water and gold cavity mirrors in the LP region. Some insight into the origin of this asymmetry can be obtained from a simple 1D model where \(N \) independent harmonic oscillators interact with a single-photon mode. By taking the self-dipole term into account (to describe V-USC), we obtain (SI Appendix, section 2)

\[
\omega_+ = \frac{1}{2} \left[\omega^2_0 + \omega^2_0 + \omega^2_0 + \frac{\Omega_N^2}{4} \right] \frac{1}{2} \omega^2_0 + \frac{\Omega_N^2}{4} \omega^2_0 + \frac{\Omega_N^2}{4} \omega^2_0 \right) \right]^{\frac{1}{2}} - \frac{4 \omega^2_0 \omega^2_0}{4}
\]

where \(\omega_0 \) and \(\omega_0 \) denote the frequencies of the harmonic oscillators and the photon mode, respectively. Given \(\omega_0 = \omega_0 - 3,550 \text{ cm}^{-1} \) and \(\omega_0 \) in Fig. 2A, we have plotted Eq. 8 (the black dashed lines) in Fig. 2B. We see that this analytical result already shows some asymmetry in the positions of the polariton peaks when plotted vs. \(\Omega_N \). While Eq. 8 agrees with our simulation data very well in the VSC limit (the green-shadowed region), the simulation data seem to be more asymmetric than Eq. 8 in the V-USC limit. Such disagreement may arise from the strong intermolecular interactions between \(H_2O \) molecules, which is completely ignored in the simplified 1D model of SI Appendix.

Likewise, the simplified 1D model in SI Appendix also suggests that the integrated peak areas of the LP and UP are...
Fig. 1. Simulated IR spectrum of liquid water under VSC or V-USC. We plot the results (A) outside the cavity or inside the cavity with effective coupling strength \(\tilde{\varepsilon} \) as (B) \(2 \times 10^{-4} \), (C) \(4 \times 10^{-4} \), (D) \(6 \times 10^{-4} \), and (E) \(8 \times 10^{-4} \) a.u. All other simulation details are listed in Materials and Methods. Note that, as \(\tilde{\varepsilon} \) increases, the LP peak is suppressed, and the UP peak is enhanced.

\[
I_{\text{LP}} \propto \omega_{\pm}^2 \sin^2 \left(\frac{\theta}{2} \right), \tag{9a}
\]
\[
I_{\text{UP}} \propto \omega_{\pm}^2 \cos^2 \left(\frac{\theta}{2} \right). \tag{9b}
\]

where \(\tan (\theta) = 2 \omega_{\pm} \Omega / (\omega_0^2 + \Omega^2) \). Again, as shown in Fig. 2C, Eq. 9 (black dashed lines) matches the simulation data roughly but not quantitatively, which may come from ignoring all of the intermolecular interactions in the 1D model. Nevertheless, from Eq. 9, we find that the asymmetry in the IR spectrum comes from two factors: 1) the factor \(\omega_{\pm}^2 \) and 2) the angular part \(\sin^2 \left(\frac{\theta}{2} \right) \) or \(\cos^2 \left(\frac{\theta}{2} \right) \). While the first part originates from the absorbed photon energies associated with the vibration modes and is universal for all IR spectrum (so that it is trivial), the second factor is quite nontrivial: at resonance (\(\omega_0 = \omega_c \)), one would naively assume that \(\sin^2 \left(\frac{\theta}{2} \right) = \cos^2 \left(\frac{\theta}{2} \right) \), and this is true if one ignores the self-dipole term [which means ignoring the \(\Gamma_{\Omega}^2 \) term in \(\tan (\theta) \)] (SI Appendix shows details). However, when the self-dipole term is considered, one finds \(\sin^2 \left(\frac{\theta}{2} \right) < \cos^2 \left(\frac{\theta}{2} \right) \), which leads to an additional suppression of the LP and the enhancement of the UP.

For liquid water in the cavity, in Fig. 3, we further investigate how 1) the polariton frequencies and 2) the integrated peak areas of the polaritons depend on the cavity mode frequency for \(\tilde{\varepsilon} = 5 \times 10^{-4} \) a.u., which is well in the USC regime. The simulation data (scatter points) agree well with the analytical result (dashed black lines) for the simplified 1D model (Eqs. 8 and 9). As shown in Fig. 3A, the energy difference \(\Delta \) for liquid water in the cavity, in Fig. 3, we further investigate how 1) the polariton frequencies and 2) the integrated peak areas of the polaritons depend on the cavity mode frequency for \(\tilde{\varepsilon} = 5 \times 10^{-4} \) a.u., which is well in the USC regime. The simulation data (scatter points) agree well with the analytical result (dashed black lines) for the simplified 1D model (Eqs. 8 and 9). As shown in Fig. 3A, the energy difference...
For parameters of the analytical expressions, we take \(\tilde{\epsilon} \) parameters, the simplified 1D model (black lines) (Eqs. 8 and 9). For simulation parameters, \(\tilde{\omega} = 5 \times 10^{-4} \) a.u. and all other parameters are the same as in Fig. 2. For parameters of the analytical expressions, we take \(\omega_0 = 3,550 \) cm\(^{-1} \) and \(\Omega_N = 937 \) cm\(^{-1} \), which corresponds to the resonant Rabi frequency when \(\tilde{\omega} = 5 \times 10^{-4} \) a.u. (Fig. 2A). The gray solid lines in A represent the uncoupled O–H stretch mode frequency and the cavity mode frequency. B, Inset plots the cavity mode frequency corresponding to the case of symmetric polaritons (i.e., the crossing point frequency in B) as a function of \(\Omega_N/2\omega_0 \).

Static Equilibrium Properties of a Single Molecule. Rabi splitting represents the collective optical response of liquid water. As shown above, although MD simulations can obtain the IR spectrum of the polaritons in a straightforward way, one can argue that since most important features of the IR spectrum can be qualitatively described by the 1D harmonic model (SI Appendix, section 2), there is little advantage to perform expensive MD simulations. As has been argued above, the real advantage of the MD simulations is that one can simultaneously obtain many other physical properties of molecules alongside with the IR spectrum. Below, we will investigate whether any property of individual H\(_2\)O molecules can be changed under VSC or U-VSC.

First, let us consider the static equilibrium properties of H\(_2\)O molecules. We recently argued that the classical potential of mean force for a single molecule is not changed by the cavity (21) under typical VSC or V-USC setups. In fact, with the same proof procedure, it is easy to show that any static thermodynamic quantity of the molecules is not changed by the cavity when nuclei and photons are treated classically. This can be illustrated as follows. Given an observable \(\mathcal{O} = \mathcal{O} (\{ p_{n\lambda} \}, \{ R_{n\lambda} \}) \), which is a function of the molecules only, the thermodynamic average for this variable inside the cavity \(\langle \mathcal{O} \rangle_{\text{QED}} \) is calculated by

\[
\langle \mathcal{O} \rangle_{\text{QED}} = \frac{\int d\{ R_{n\lambda} \} d\{ p_{n\lambda} \} d\{ \tilde{p}_{n\lambda} \} \mathcal{O} e^{-\beta H_{\text{QED}}}}{\int d\{ R_{n\lambda} \} d\{ p_{n\lambda} \} d\{ \tilde{p}_{n\lambda} \} e^{-\beta H_{\text{QED}}}} \tag{10a}
\]

\[
= \frac{\int d\{ R_{n\lambda} \} d\{ p_{n\lambda} \} \mathcal{O} e^{-\beta H_{M}}}{\int d\{ R_{n\lambda} \} d\{ p_{n\lambda} \} e^{-\beta H_{M}}} = \langle \mathcal{O} \rangle_{M}, \tag{10b}
\]

which is identical to the average outside the cavity \(\langle \mathcal{O} \rangle_{M} \) after the integration over the photon modes, where \(H_{\text{QED}} \) and \(H_{M} \) are defined in SI Appendix, section 1.

Even though the mathematical proof guarantees that the static thermodynamic properties are not changed inside the cavity, it is still very helpful to check some static properties by simulation as it provides a tool for checking the numerical convergence. Fig. 4
plots the normalized bond length distribution of the O–H bond. Fig. 5 plots the radical pair distribution function between the oxygen atoms. For these two static properties, the results outside the cavity (solid black) agree exactly with the results inside the cavity (with effective coupling strength $\tilde{\varepsilon} = 4 \times 10^{-4}$ a.u.; cyan dashed). We have checked the results under other coupling strengths, and this conclusion is not changed. Hence, both analytical and numerical treatments suggest that the static thermodynamic properties are not changed inside the cavity within a classical treatment of nuclei and photons. Of course, quantum effects associated with nuclei and photons may play a role in the cavity modification of static properties, which needs further investigation.

Dynamical Properties of a Single Molecule. Next, let us move to the dynamical properties of individual H$_2$O molecules. In particular, we are interested in whether the translational or rotational motion of a single H$_2$O molecule is changed under VSC.

According to linear response theory, the translational diffusion of H$_2$O can be described by the velocity autocorrelation function [VACF; $C_{vv}(t)$] of the center of mass of each molecule:

$$C_{vv}(t) = \langle v(t) v(0) \rangle.$$ \[11\]

One can calculate the diffusion constant D from $C_{vv}(t)$ by $D = \frac{1}{3} \int_0^{\infty} C_{vv}(t) \, dt$.

Fig. 6A plots $C_{vv}(t)$ as a function of time for the center of mass of H$_2$O. The exact agreement between the result outside the cavity (black solid) and that inside the cavity (cyan dashed; with effective coupling strength $\tilde{\varepsilon} = 4 \times 10^{-4}$ a.u.) suggests that $C_{vv}(t)$ is not changed by VSC or V-USC. This finding can also be corroborated by looking at the Fourier transform $C_{vv}(\omega)$, which is shown in Fig. 6B. Again, we have confirmed this conclusion by checking other coupling strengths. Note that although the VACF for the center-of-mass motion of H$_2$O is not changed by VSC or V-USC, we do find a small cavity modification of the VACF spectrum, with the peak from a bare molecule. Compared with the IR spectrum of the liquid water in Fig. 1, these additional small peaks have the same frequencies as the UP peaks, demonstrating the modification of single-molecule rotation under V-USC. Note that for smaller $\tilde{\varepsilon}$ (i.e., in the VSC limit), the additional peak will be covered by the large bare-molecule peak and is hardly identifiable. The change of the rotational behavior of individual molecules may possibly change the ground-state chemistry for many scenarios, which should be extensively studied in the future. Lastly, we emphasize that apart from these additional peaks, the width of the bare-molecule peaks is mostly unchanged.

For simplicity, we will study only the first order of OACF, which means $P_1(u_n(0) \cdot u_n(t)) = u_n(0) \cdot u_n(t)$.

For H$_2$O, the z axis of the principal axes coincides with the dipole motion direction. In Fig. 7A, we plot $C_{zz}(t)$, the z component of the first-order OACF, as a function of time.Fig. 7A, Inset zooms in the initial rotation relaxation process when time $t < 0.1$ ps. The outside cavity result (black dashed) largely agrees with results of the inside cavity (with the effective coupling strength $\tilde{\varepsilon}$ as 4×10^{-4} a.u. [cyan solid], 6×10^{-4} a.u. [red dashed], and 8×10^{-4} a.u. [blue dashed-dotted]). Fig. 7B plots the corresponding spectrum $I_z^2(\omega)$, which is defined as

$$I_z^2(\omega) = \omega^2 C_z^2(\omega).$$ \[13\]

$I_z^2(\omega)$ can be regarded as the single-molecule IR spectroscopy along the dipole-motion direction, which describes how a single molecule rotates in the environment. As clearly shown in Fig. 7B, Inset, for large-enough $\tilde{\varepsilon}$ (in the V-USC limit or $\tilde{\varepsilon} \geq 4 \times 10^{-4}$ a.u.), an additional small peak emerges with intensities 2–8% of the peak from a bare molecule. Compared with the IR spectrum of the liquid water in Fig. 1, these additional small peaks have the same frequencies as the UP peaks, demonstrating the modification of single-molecule rotation under V-USC. Note that for smaller $\tilde{\varepsilon}$ (i.e., in the VSC limit), the additional peak will be covered by the large bare-molecule peak and is hardly identifiable. The change of the rotational behavior of individual molecules may possibly change the ground-state chemistry for many scenarios, which should be extensively studied in the future. Lastly, we emphasize that apart from these additional peaks, the width of the bare-molecule peaks is mostly unchanged.
trum when the cavity modes are resonantly coupled to the O−H stretch peak in the IR spectrum where the LP is suppressed and the UP is enhanced. Such symmetry can be inverted (i.e., the LP is enhanced, and the UP is suppressed) by increasing the cavity mode frequency. Moreover, with a classical treatment of nuclei and photons, while we have found no modification of the static equilibrium properties as well as the translational diffusion of liquid water, we have observed that the OACF of H$_2$O molecules is modified under V-USC. Such observation may perhaps help us understand the catalytic effect of VSC or V-USC.

In conclusion, we have performed classical cavity MD simulations of chemical reactions under VSC or V-USC. This cavity MD framework can also be used to simulate recently reported 2D-IR spectroscopy studies (11, 12) on polariton relaxation dynamics. At the same time, obtaining analytical solutions for the cavity modification of the dynamical properties would also be very helpful. We hope such studies will help solve the mystery of the catalytic effects underlying VSC or V-USC in the near future.

Materials and Methods

We calculate several equilibrium and linear response observables of water (F$_{\text{q,TIP4P/F}}$, P$_{\text{q,TIP4P/F}}$, and VACF) in Eq. 4; bond length, $\ell(r)$, and VACF in Eq. 11; and OACF in Eq. 12) by a classical force field—the q-TIP4P/F water model (34)—which provides the simplest description of both the equilibrium and dynamic properties of liquid water. Coupling to an optical cavity mode is included by modifying an open-source MD package IPI (52).

As detailed in SI Appendix, section 1, the cavity is placed along the z axis. A pair of thick SiO$_2$ layers is placed between the cavity mirrors so that the water molecules can move freely only in a small region (but still on the order of micrometers) near the cavity center. Such additional SiO$_2$ layers are used 1) to ensure that the intermolecular interactions between H$_2$O molecules are the same as those in free space and 2) to validate the long-wave approximation that we have taken from the very beginning. We consider only two cavity modes polarized along x and y directions, both of which are resonant with the O−H stretch mode. We set the auxiliary mass for the two photons as $m_{\text{aux}} = 1$ a.u. Using periodic boundary condition as detailed in SI Appendix, section 1, we simulate 216 H$_2$O molecules in a cubic cell with length 35.233 a.u., so that the water density is 0.997 g cm$^{-3}$. At 300 K, we first run the simulation for 150 ps to guarantee thermal equilibrium under a canonical (or NVT) ensemble where a Langevin thermostat is added on the momenta of all particles (nuclei + photons). The resulting equilibrium configurations are used as starting points for 80 consecutive microcanonical-ensemble (NVE) trajectories of length 20 ps. At the beginning of each trajectory, the velocities are resampled by a Maxwell–Boltzmann distribution under 300 K. The intermolecular Coulombic interactions are calculated by an Ewald summation. The simulation step is set as 0.5 fs, and we store the snapshots of trajectories every 2 fs. SI Appendix, section 1 has details of the q-TIP4P/F force field and the implementation details. The code and simulation data are available on GitHub (53).

ACKNOWLEDGMENTS. This material is based upon work supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences Award DE-SC0019397 (to J.E.S.); US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division (to A.N.); and Israel–US Binational Science Foundation Grant 2014113 (to A.N.). T.E.L. acknowledges the Vagelos Institute for Energy Science and Technology at the University of Pennsylvania for a graduate fellowship. This research also used resources of the National Energy Research Scientific Computing Center, a US Department of Energy Office of Science User Facility operated under Contract DE-AC02-05CH11231.

Effects of a Multimode Cavity. Note that all of the results presented above consider only a single cavity mode frequency, which is valid when the fundamental cavity mode is near resonance with the highest molecular vibrational frequency (i.e., the O−H stretch mode $\sim 3,500$ cm$^{-1}$ for liquid water). However, for a cavity with a larger length, the fundamental cavity mode frequency can be much smaller than that of the O−H stretch mode. In such a case, many cavity modes must be taken into account. In SI Appendix, section 4, we show the results when liquid water is coupled to a multimode cavity. When different cavity modes are resonantly coupled to the vibrational modes, we observe a multimode Rabi splitting in the IR spectrum (i.e., several Rabi splittings are formed for different vibrational modes). At the same time, however, the above findings regarding the single-molecule properties are not changed when a multimode cavity is considered.

Conclusion

In conclusion, we have performed classical cavity MD simulations under VSC or V-USC. With liquid water as an example, when the cavity modes are resonantly coupled to the O−H stretch mode, we have found asymmetric Rabi splitting of the O−H stretch peak in the IR spectrum where the LP is suppressed and the UP is enhanced. Such symmetry can be inverted (i.e., the LP is enhanced, and the UP is suppressed) by increasing the cavity mode frequency. Moreover, with a classical treatment of nuclei and photons, while we have found no modification of the static equilibrium properties as well as the translational diffusion of liquid water, we have observed that the OACF of H$_2$O molecules is modified under V-USC. Such observation may perhaps help us understand the catalytic effect of VSC or V-USC.
