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How to recover Marcus theory with fewest switches surface
hopping: Add just a touch of decoherence
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We present a slightly improved version of our augmented fewest switches surface hopping (A-
FSSH) algorithm and apply it to the calculation of transition rates between diabatic electronic states
within the spin-boson model. We compare A-FSSH rates with (i) Marcus rates from the golden rule,
(ii) Tully-style FSSH rates, and (iii) FSSH rates using a simple, intuitive decoherence criterion. We
show that unlike FSSH, A-FSSH recovers the correct scaling with diabatic coupling (quadratic in V )
as well as the lack of dependence on harmonic frequency ω for small enough values of ω and large
enough temperatures. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733675]

I. INTRODUCTION

Achieving efficient and accurate simulations of photo-
chemical reaction dynamics is an important, but not fully
solved problem in the field of computational chemistry.
Because photochemical reactions involve electronic exci-
tations coupled to nuclear motion, which invalidate the
Born-Oppenheimer approximation, standard tools in com-
putational chemistry are mostly inapplicable. In particular,
computational chemistry today excels in two areas: (i) from
the perspective of electronic structure theory, modern soft-
ware packages can calculate adiabatic surfaces routinely
and thus model vibrational and electronic excitation ener-
gies; (ii) from the perspective of chemical dynamics, mod-
ern biosimulation programs excel at modeling the motion
of large proteins using either approximate force fields or
rigorous ab-initio potential energy surfaces (see previous).
When the Born-Oppenheimer approximation breaks down,
however, multiple adiabatic electronic states become cou-
pled and standard computational chemistry leaves its com-
fort zone; the two step approach described above is no longer
sufficient.

Despite the difficulty inherent to nonadiabatic problems,
several methods do exist in the literature for modeling
electronic relaxation and nuclear friction at the same time,
thus propagating both the nuclei and electrons.1–4 Perhaps
the most efficient and conceptually simple is due to Tully.5

According to Tully, one should treat the nuclei completely
classically and the electrons quantum mechanically, resulting
in accelerated calculations compared with true quantum
dynamics. This classical assumption is intuitively reasonable
because nuclei are relatively massive whereas electrons
are relatively light. In particular, according to Tully, mixed
quantum-classical dynamics is modeled by three distinct
processes: (i) each classical particle moves along one adia-
batic surface, (ii) the electronic wavefunction associated with
each classical trajectory is propagated using the electronic
time-dependent Schrodinger equation with the classical
nuclear positions treated as parameters, and (iii) just as the

nuclear positions influence the electronic wavefunction as
parameters in the time-dependent Schrodinger equation, the
electronic wavefunction affects the nuclei, by playing a role
in determining if the nuclear trajectory will hop from the
current adiabatic surface to another surface. Surface hops
maintain consistency between the projection of the electronic
wavefunction onto each surface and the population of nuclear
trajectories moving along that surface. Tully chose as his
hopping rate the minimum rate that would enforce this consis-
tency, and fewest switches surface hopping (FSSH) was born.

Although FSSH is used widely to model nonadiabatic
processes,5–11 the method cannot be derived and has several
deficiencies as compared to exact quantum dynamics, some
intentional and some unintentional.12–17 At bottom, these de-
ficiencies are the result of treating the nuclei classically. On
the one hand, the FSSH algorithm was designed specifically
to sacrifice nuclear quantum effects for computational effi-
ciency, and thus, the intentional failures of FSSH are that the
algorithm neglects tunneling and the effects of zero point en-
ergy. On the other hand, standard FSSH has other uninten-
tional shortcomings caused by a necessarily asymmetric treat-
ment of a quantum system interacting with a classical system.
In particular and most importantly, FSSH’s quantum-classical
asymmetry leads to an overcoherence in the electronic wave-
function when a nuclear trajectory passes through a region
of derivative coupling. More specifically, after leaving a re-
gion of derivative coupling, the electronic wavefunction has
probability density on multiple surfaces corresponding to a
superposition of two nuclear wave packets on different elec-
tronic surfaces. Each nuclear trajectory, however, propagates
along only one surface, representing wave packet motion on a
single surface in a region without derivative coupling. In this
way, the electronic wavefunction is overcoherent. This mis-
handling of the interaction between the quantum and classi-
cal subsystems is known as the decoherence problem and can
lead to spurious results even if the classical approximation
itself is sound.18–33

In order to probe this decoherence problem in FSSH,
we need a dynamical test that is sensitive to the effects of
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decoherence. Recent work has shown that the decoherence
problem is exposed and amplified when nuclei travel multi-
ple times through regions of derivative coupling.9, 15–17, 34, 35

Thus, transition rates should provide a strong test of decoher-
ence because over the course of a long time, one trajectory
can pass through a coupling region many times before relax-
ing into the product well. In fact, we have shown recently that
for the spin-boson model it is necessary to include decoher-
ence to recover the correct scaling of Marcus transfer rates.36

In Ref. 36 we used a simple model to add decoherence to the
FSSH algorithm, and in doing so, proved that adding decoher-
ence recovers the correct scaling. However, the simple deco-
herence model in Ref. 36 can be applied only (i) when the full
potential energy surfaces are known and (ii) when the driving
force is very different from the reorganization energy. Clearly
a more general method is needed, and we believe that our aug-
mented fewest switches surface hopping (A-FSSH) algorithm
can fill that role.16, 37 In A-FSSH the decoherence mechanism
works by stochastically collapsing the electronic wavefunc-
tion associated with the nuclear trajectories according to a rate
that is calculated on-the-fly. The decoherence rate is based on
position and momentum moments that are propagated along
with the other dynamical variables (position and momentum),
and we follow Tully’s insight by enforcing the fewest number
of collapsing events while still insisting on a necessary rate of
decoherence. This more sophisticated collapse criterion leads
to a general algorithm (A-FSSH) that is free from any ad hoc
parameterization and can be applied to any molecular system
of interest. In this paper, we present a slightly improved and
more stable version of our A-FSSH algorithm (compared to
Refs. 16 and 37), and we evaluate it with the same spin-boson
system from Ref. 36 only now for a much broader and inclu-
sive parameter regime. We show that A-FSSH reproduces the
correct Marcus scaling.

This paper is structured as follows. We start by setting
our notation in Sec. II. In Sec. III we review FSSH and dis-
cuss how it fails to handle electron decoherence correctly. In
Sec. IV we review A-FSSH and lay out explicitly our slightly
modified and improved A-FSSH method. Section V presents
the details of our application of A-FSSH to the specific prob-
lem of determining transition rates for the spin-boson system.
In Sec. VI we show the results of A-FSSH and compare them
to FSSH. Finally, we conclude in Sec. VII with a look toward
future work.

II. NOTATION

With both nuclei and electrons, as well as a mix of clas-
sical and quantum degrees of freedom, notation has the possi-
bility of getting somewhat confusing. To be as clear as possi-
ble we use this section to discuss our usage. We write classical
variables that have the potential of being multi-dimensional
vectors with the vector arrow, such as the total nuclear posi-
tion vector !R. We denote each component of classical vectors
with a superscript label as in Rα . Throughout we use (i) up-
percase letters for nuclear coordinates and momenta (R, P),
(ii) lowercase Greek for nuclear components (α,β), and (iii)
lowercase Roman for electronic components (i, j, k). There
are two types of quantum mechanical operators that we con-

sider, nuclear operators and electronic operators. Nuclear op-
erators we write in bold as in the total nuclear position op-
erator !R, and we write electronic operators with a hat as in
the reduced electronic density matrix σ̂ = T rN ρ̂. We do con-
sider quantum operators that are both nuclear and electronic
such as the total density operator ρ̂ (bold and hat). We employ
the basis of adiabatic states which are parameterized by the
nuclear positions for the electronic operators, and we write
|%i( !R)〉 for the ith state. We denote an element of a purely
electronic operator in the adiabatic basis (at nuclear position
!R) using subscripts, i.e., the reduced electronic density matrix
〈%i( !R)|σ̂ |%j ( !R)〉 = σij .

III. FEWEST SWITCHES SURFACE HOPPING
AND DECOHERENCE

A. Review of FSSH

Tully’s fewest switches surface hopping method5 is a
mixed quantum-classical algorithm that treats the nuclei as
classical particles moving along adiabatic potential energy
surfaces created by the quantum mechanical electrons. The
objective of FSSH is to model the classical density on each
surface, and therefore the diagonal elements of a mixed
quantum-classical density matrix. In order to approximate the
density on each surface, FSSH employs a swarm of classical
nuclear trajectories each with an associated electronic wave-
function. For the purposes of this discussion of the FSSH
algorithm, we assume that we have directly computed the adi-
abatic potential energy surfaces, which are the eigenvalues of
the electronic Hamiltonian (V̂ ),

V̂ ( !R)|%i( !R)〉 = Ei( !R)|%i( !R)〉. (1)

As always, the full Hamiltonian can be written as the elec-
tronic Hamiltonian plus the nuclear kinetic energy Ĥ = V̂
+ Tnuc.

Once the adiabatic potential energy surfaces are known,
carrying out the mixed quantum-classical dynamics involves
three distinct processes. First, each nuclear trajectory moves
classically along a single surface (e.g., Ei( !R) the ith surface),
which we call the active surface. Second, we evolve the elec-
tronic statevector, !c, associated with each nuclear trajectory
according to the Schrodinger equation with the classical nu-
clear positions taken as parameters:

dcj

dt
= − i

¯
∑

k

Vjk ck −
∑

k,α

P α

Mα
dα

jk ck, (2)

where dα
jk( !R) = 〈%j ( !R)| ∂

∂Rα |%k( !R)〉 is the derivative cou-
pling matrix and Vjk( !R) = 〈%j ( !R)|V̂ ( !R)|%k( !R)〉 is the po-
tential energy matrix. We can also consider the equivalent
equation in the density matrix formulation:

d

dt
σjk(t) = − i

¯ [V̂ , σ̂ ]jk −
∑

α

P α

Mα
[d̂α, σ̂ ]jk, (3)

where σ ij = cicj*.
The third and final part of the propagation algorithm in

FSSH is to allow for hops between surfaces. At every time
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step, each trajectory has the ability to switch surfaces, thus
forcing the relative number of trajectories on each surface to
match approximately the probability density on that surface
calculated according to the electronic wavefunction. In order
to maintain this consistency, the probability for a hop during
each time step, dt, from the current surface (call it i) to an
alternative surface j can be no smaller than

γ
hop
ij = dt

(
2
¯ Im(cj

∗ciVji) − 2Re(cj
∗ci

!̇R · !dji)
)/

|ci |2.
(4)

Equation (4) is Tully’s fewest switches criterion. Note that
since we use an adiabatic basis, Vji = 0 when i &= j, and all
hops are due to the derivative coupling in Eq. (4). If a hop
does occur, then according to FSSH, the last step is to adjust
the nuclear momentum in order to conserve energy.

By looking at Eqs. (2) and (4) it is possible to determine
in what situations hops will occur. Equation (2) shows that if
a trajectory is in a region of negligible derivative coupling,
its associated electronic amplitude will not change. Once the
trajectory enters a region of derivative coupling, however, the
electronic amplitudes do change and hopping can occur. After
leaving the region of derivative coupling, the hopping proba-
bility is again negligible. Therefore, for an FSSH calculation,
the nuclei evolve classically in regions of negligible derivative
coupling, and nuclei have the ability to switch surfaces only
in regions of finite derivative coupling.

The asymmetric treatment of the nuclei and electrons
described in this section leads to the decoherence problem,
which standard FSSH does not address. We employ Sec. III B
to explicitly define the decoherence problem, and discuss its
origins.

B. Decoherence of the electronic density matrix
and surface hopping

As it appears in the FSSH algorithm, the decoherence
problem manifests itself in two complementary ways, one
from the perspective of the electronic wavefunction and one
from the perspective of the electronic density matrix. While
wavefunctions and density matrices offer equivalent informa-
tion in closed systems, they offer different perspectives for
open quantum systems. We will describe the decoherence
problem from both angles.

By design, the FSSH algorithm propagates a swarm of
trajectories to approximate the density of a quantum wave
packet in phase space. From the perspective of the electronic
wavefunction, each individual FSSH trajectory is overcoher-
ent and requires decoherence. To see this point, consider the
electronic wavefunction for a trajectory that has just passed
through a region of derivative coupling. After the trajectory
has gone through the coupling region, the classical particle
has either hopped or not hopped between surfaces. Of course,
according to exact quantum dynamics, both possibilities oc-
cur at the same time, and the total nuclear-electronic wave-
function is really a superposition of wave packets on both sur-
faces. To account for this quantum superposition, FSSH stores
a phase between the quantum wave packets in a simple elec-
tronic wavefunction (even though the classical particle is only

moving along a single surface). Each FSSH trajectory carries
its own electronic wavefunction and phase, in addition to po-
sition and momentum, altogether offering a global approxi-
mation to the exact phase that depends on nuclear position.
The decoherence problem then arises after an avoided cross-
ing event when wave packets separate on different surfaces,
but each FSSH wavefunction retains its phase indefinitely, as
if a superposition still exists at a point in R-space. The imme-
diate consequence of this overcoherence is that the active sur-
face populations and the weighted averages of the electronic
wavefunction often no longer match. In the long run, this
overcoherence problem is amplified by passing through re-
gions of derivative coupling multiple times.9, 15–17, 34, 35 Even-
tually, after passing multiple times through a region of deriva-
tive coupling, the electronic wavefunction stored by FSSH
corresponds to an ever more complicated (often completely
nonsensical) superposition of wave packets.

The simplest solution to the overcoherence of the
FSSH electron wavefunction is to remove the electronic
component associated with the inactive surface.15, 20 Thus,
after the trajectory has left the coupling region, the electronic
wavefunction should be projected (or “collapsed”) onto the
active adiabatic surface, and the overcoherence problem can
be solved by making the electronic wavefunction consistent
with the active surface. The difficulty, however, is developing
a consistent rule for knowing when to collapse the electronic
wavefunction. For the simple decoherence criterion used in
Ref. 36, we chose to collapse the electronic wavefunction
at the minimum of the diabatic surfaces. Other authors have
proposed to collapse the electronic wavefunction when the
derivative coupling is below some threshold,15 when trajec-
tories diverge,20 or when other heuristic measures apply.28

The A-FSSH algorithm (presented below) focuses on ¯
and the difference in potential energy between the wave pack-
ets, evaluating that difference both at the current position of
the surface hopping trajectory and at the fictitious position of
the emerging wave packet. Ultimately, a successful algorithm
for decoherence must collapse the wavefunction outside the
region of derivative coupling, removing the overcoherence of
the FSSH electronic wavefunction.

We can also view the decoherence problem from the per-
spective of the electronic density matrix. For a fully quantum
system with two electronic states and one nuclear degree of
freedom, the full density matrix ρ̂ at one point in position
space is

〈R|ρ̂|R〉 =
( |χ1(R, t)|2 χ1(R, t)χ∗

2 (R, t)

χ2(R, t)χ∗
1 (R, t) |χ2(R, t)|2

)

,

(5)
where χ1(R, t) and χ2(R, t) are the nuclear wavefunctions cor-
responding to the two electronic states. Tracing over the nu-
clear degrees of freedom gives the reduced electronic density
matrix

σ̂ =
( ∫

dR|χ1(R, t)|2
∫

dRχ1(R, t)χ∗
2 (R, t)

∫
dRχ2(R, t)χ∗

1 (R, t)
∫

dR|χ2(R, t)|2

)

.

(6)
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At time t = 0, consider a nuclear wave packet moving to-
wards an avoided crossing with all of its probability in the
first electronic state (χ2(R, t) = 0). It is clear from Eq. (6)
that the reduced electronic density matrix is initially pure
(Tr(σ̂ 2) = 1). After the system has passed through the avoided
crossing, probability density will have moved from the first
electronic state to the second electronic state, and our system
will now be in a superposition of the two electronic states (i.e.
both

∫
dR|χ1(R, t)|2 > 0 and

∫
dR|χ2(R, t)|2 > 0). So long as

χ1(R, t) and χ2(R, t) differ by more than a constant factor, one
can show that σ̂ must be mixed (Tr(σ̂ 2) < 1). At this point in
time, because the nuclear wave packets on the different sur-
faces feel different forces, there will be a tendency for the
nuclear wave packets χ1 and χ2 to spread apart, thus caus-
ing σ 12 to decrease while the diagonal elements of σ̂ remain
constant. Here we assume that the wave packets do not en-
ter a coupling region again. In the end, the decreasing σ 12 in
combination with the constant diagonal elements of σ̂ implies
that the reduced electronic density matrix is becoming more
and more mixed (Tr(σ̂ 2) is decreasing).20, 21 To make the situ-
ation even more complicated, after evolution to longer times,
the off-diagonal elements of σ̂ may increase due to the nu-
clear wave packets coming back together and constructively
interfering. For a periodic system, the reduced density matrix
might even oscillate between pure and mixed matrices.

Comparing this exact quantum dynamical behavior to the
FSSH algorithm reveals the decoherence problem from the
perspective of the electronic density matrix. Within the FSSH
algorithm, we propagate a swarm of trajectories, each with
a corresponding electronic wavefunction or pure density ma-
trix. Then, in order to estimate the reduced electronic density
matrix as the partial trace over the nuclear coordinates of the
full density matrix, we compute the statistical average of all
those pure density matrices (with each trajectory given equal
weight). Inevitably the reduced density matrix will become
more or less mixed because the quantum system in FSSH (i.e.,
the electrons) interacts with a classical bath (i.e., the nuclei).
We stress, however, that the reduced electronic density matrix
for standard FSSH cannot become mixed at the correct rate.

Standard FSSH cannot find the correct rate of decoher-
ence or possible recoherence because the absolute value of
the off-diagonal elements of the electronic density matrix
is constant when d̂ = 0 (see Eq. (3)). As described above,
after passing through a region of derivative coupling, the
FSSH algorithm does not recognize that two wave packets can
separate, nor that the exact electronic density matrix can de-
pend strongly on nuclear position. By contrast, A-FSSH im-
proves on this situation by using a rigorous equation of mo-
tion for the reduced electronic density matrix based on the Li-
ouville equation, and extracting a decoherence rate. In other
words, the A-FSSH method attempts to reconstruct a fully re-
duced electronic density matrix (averaged over R-space) by
correcting the FSSH local density matrix at each point in R-
space. Alas, the A-FSSH approach is still unable to capture
recurrences. After all, to capture recoherences and the effects
of multiple wave packets recombining, we would require that
surface hopping trajectories be run in parallel, so that different
trajectories could recombine, and this parallelism goes against
the very spirit of independent surface hopping trajectories.

To sum up, FSSH interprets a swarm of multiple trajec-
tories as representing a quantum wave packet in phase space,
and if we average over trajectories, the off-diagonal elements
of the density matrix need not decay in time, and if they do de-
cay, the decay rate will usually be incorrect. According to A-
FSSH, we can effectively model a quantum-classical system
with correctly decaying off-diagonal elements, corresponding
to a mixed state, by collapsing the electronic wavefunction
when appropriate (approximating the separation of the exact
wave packets). This picture of decoherence in the surface hop-
ping algorithm has strong implications.

IV. AUGMENTED FEWEST SWITCHES
SURFACE HOPPING

We now review the A-FSSH algorithm, including a step-
by-step recipe to facilitate its use by interested readers. The
exact details of the method have been minimally changed in
this paper compared to Refs. 16 and 37 in order to (i) simplify
the algorithm, (ii) extend the algorithm to the case of multiple
electronic states, (iii) improve long-time results for the calcu-
lation of rates for the spin-boson model, the most intensive
benchmark so far applied to A-FSSH. All changes are rather
minor and do not significantly alter the results of previous
benchmarks.16, 17, 37

A. A-FSSH Review

1. Moments and Liouville equation

According to A-FSSH, we model a decoherence rate by
the decay of the off-diagonal element of the reduced elec-
tronic density matrix (σ̂ = TrN ρ̂), which we expect phe-
nomenologically to have an exponential form,

|σij (t)| ∝ exp
(
− t

/
τ

ij
d

)
, (7)

where τ
ij
d is the decoherence rate between surfaces i and j.38

To compute τ
ij
d in the context of surface-hopping trajectories,

we use a moment expansion of the type found in correlated
electronic-ionic dynamics of Horsfield et al.39, 40 along with a
linear approximation for the equation of motion of σ̂ ; accord-
ing to A-FSSH (and unlike FSSH), the magnitude of σ ij may
change outside regions of derivative coupling. One key differ-
ence between our approach and that of Horsfield et al. is that
we expand the Liouville equation around a surface hopping
trajectory (RSH(t), PSH(t)) rather than an Ehrenfest trajectory.

In this paper we define our moments slightly differently
than we have in previous A-FSSH publications.16, 37 Here, we
define our position and momentum moments relative to the
surface hopping trajectories as follows:

δR̂α(t) ≡ TrN
[ (

Rα −
〈
Rα

SH (t)
∣∣Rα

∣∣Rα
SH (t)

〉
IN

)

×
(
ρ̂(t) − 〈%act |ρ̂(t)|%act 〉Îe

) ]
, (8)

δP̂ α(t) ≡ TrN
[ (

Pα −
〈
P α

SH (t)
∣∣Pα

∣∣P α
SH (t)

〉
IN

)

× (ρ̂(t) − 〈%act |ρ̂(t)|%act 〉Îe)
]
, (9)
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or employing the linearity of the partial trace

+R̂α(t) ≡ TrN
[(

Rα − Rα
SH (t)

)
ρ̂(t)

]
, (10)

+P̂ α(t) ≡ TrN
[(

Pα − P α
SH (t)

)
ρ̂(t)

]
, (11)

δR̂α(t) = +R̂α(t) − 〈%act | +R̂α(t) |%act 〉 Îe, (12)

δP̂ α(t) = +P̂ α(t) − 〈%act | +P̂ α(t) |%act 〉 Îe, (13)

where |%act〉 is the state of the active surface, i.e., the sur-
face that the surface-hopping trajectory is walking along. In
Eqs. (8) and (9), we have shifted the position and momentum
moments so that all moments on the active surface are always
zero, δRα

act,act (t) = δP α
act,act (t) = 0. In doing so, we find sim-

pler expressions relative to Ref. 16 for decoherence rates and
a more natural extension to the case of multiple (i.e., more
than two) electronic states.

We derive the equations of motion for the moments
in Eqs. (8) and (9) by expanding the full quantum Liouville
equation to first order in the moments (ignoring terms with
second order derivatives of the potential energy) giving16

T R
jk ≡ − i

¯ [V̂ , δR̂α]jk +
δP α

jk

Mα
−

∑

β

P
β
SH

Mβ
[d̂β , δR̂α]jk,

(14)

d

dt
δRα

jk = T R
jk − T R

ii δjk, (15)

T P
jk ≡ − i

¯ [V̂ , δP̂ α]jk + 1
2

(δF̂ ασ̂ + σ̂ δF̂ α)jk

−
∑

β

P
β
SH

Mβ
[d̂β , δP̂ α]jk, (16)

d

dt
δP α

jk = T P
jk − T P

ii δjk, (17)

where the active surface is the ith surface, V̂ ≡ V̂ ( !RSH (t))
is the matrix of potential energy surfaces, and F̂ α

≡ F̂ α( !RSH (t)) = −∂V̂ /∂Rα| !RSH
is the matrix of forces.

We define the force difference δF̂ α ≡ F̂ α − F α
SH Îe, where

!FSH is the force on the active surface at !RSH (F α
SH

= −∂Vii/∂Rα| !RSH
).

The equation of motion for the reduced electronic density
matrix is

d

dt
σjk(t) = − i

¯ [V̂ , σ̂ ]jk +
∑

α

i

¯ [F̂ α, δR̂α]jk

−
∑

α

P α
SH

Mα
[d̂α, σ̂ ]jk. (18)

Note that Eq. (18) is the same as Eq. (3) except for the
[F̂ α, δR̂α] term. This additional term yields a correction to
σ̂ . For our purposes, the off-diagonal corrections to σ̂ are the
most important as they allow us to calculate the decoherence
rate.

2. Decoherence rate

Comparing Eq. (18) with Eq. (7), and assuming a region
of zero derivative coupling ( !dni = 0), we find a nominal de-
coherence rate (between wave packets on surfaces i and n)

1
τ ni
d

= −
d
dt

|σni(t)|
|σni(t)|

= −
d
dt

|σni(t)|2

2|σni(t)|2

= Im
∑

α

((
F α

nn − F α
ii

)
δRα

ni

¯σni

)

. (19)

This expression is not stable, however, since σ ni can get quite
small and it is in the denominator of Eq. (19). To derive a sta-
ble rate, we assume a frozen Gaussian41 form for the nuclear
wavefunctions, with our total wavefunction as

〈!r, !R|,(t)〉 ≈
∑

k

ckgk( !R)〈!r|%k( !R)〉, (20)

where

gk( !R) ≡ 〈 !R|gk( !Rk, !Pk)〉 (21)

≡
∏

α

(
1

πaRα 2

) 1
4

exp

(
−

(
Rα − Rα

k (t)
)2

2aRα 2

)

(22)

× exp
(

i

¯P
α
k (t)(Rα − Rα

k (t))
)

. (23)

In this approximation, the total wavefunction is a superposi-
tion of multiple Gaussian wave packets, one on each surface
and each with an associated time-dependent position and mo-
mentum ( !Rk(t), !Pk(t)). With this simplification, we can ap-
proximate the relevant term in Eq. (19) by carrying out the
nuclear traces as integrals over the nuclear coordinates giving

Im
(

δRα
ni

σni

)
≈

((
P α

n − P α
i

)
aRα

2

2¯

)

. (24)

This still does not give a unique expression for the decoher-
ence rate, however, because we have not defined a width of the
Gaussians, aRα . To that end, we choose the widths in order to
maximize the overlap of the wave packets on the two relevant
surfaces (the ith and the nth as written). In other words, we
require

∂|〈gn|gi〉|
∂aRα

= 0, (25)

which gives

aRα
2 = ¯ |Rα

n − Rα
i |

|P α
n − P α

i |
. (26)

This choice should result in a minimal rate of collapsing
events that still satisfies the correct decay of the off-diagonal
matrix element in Eq. (19).

Finally, we plug Eq. (26) back into Eqs. (19) and (24),
identifying the Gaussian wavepacket centers as

Rα
n ≈ Rα

SH (t) + δRα
nn

σnn

, (27)
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with Rα
i = Rα

SH by definition (i is always our label for the
active surface), and we compute

1
τ ni
d

=
∑

α

(
F α

nn − F α
ii

)
δRα

nn

2¯σnn

. (28)

Here we assume sgn(δRα
nn) = sgn(δP α

nn) so that wave packets
have just recently separated, consistent with these moments
being small and a short time approximation. Because the σ nn

term can be problematic (in the denominator), again we pre-
serve the theme of having the fewest number of collapsing
events, and we choose the maximal value for the electronic
density matrix, σ nn = 1:

1
τ ni
d

=
∑

α

(
F α

nn − F α
ii

)
δRα

nn

2¯ . (29)

3. Decoherence in regions of derivative coupling

The derivation of our decoherence rate has relied so far
on the approximation that the derivative coupling is negligi-
ble. Of course this is not always true, and our treatment of the
decoherence rate must be slightly modified for accuracy, espe-
cially within regions of derivative coupling. After all, the idea
behind A-FSSH is that after the trajectory has left a region
of derivative coupling, the electronic wavefunction must col-
lapse onto the current surface in order to correct for the over-
coherence of FSSH. However, collapsing inside a region of
derivative coupling is a bad idea leading to spurious results.42

To discourage collapses in regions of derivative coupling,
we reduce our decoherence rate by a factor that arises from
Eq. (18) for non-zero derivative couplings. In that case, the
off-diagonal term of the force matrix is nonzero and satisfies

F α
ni = dα

ni (En(R) − Ei(R) ). (30)

These non-zero derivative couplings result in an extra term in
Eq. (19)

Im
∑

α

(
F α

ni

(
δRα

ii − δRα
nn

)

¯σni

)

. (31)

In order to estimate an average magnitude for σ ni we take
|σni | ≈ √

σnnσii to have its maximum value with σnn = σii

= 1
2 so that Im(σni) ≈ 1

2 in Eq. (31). We then subtract the ab-
solute value of Eq. (31) from the total decoherence rate. In
this way, the additional term serves as an impediment to col-
lapsing in regions of derivative coupling. This gives the final
decoherence rate that we use in A-FSSH for separation of the
wave packet on an inactive surface n and the wave packet on
an active surface i,

(final expression)
1

τ ni
d

≡
∑

α

(
F α

nn − F α
ii

)
δRα

nn

2¯

−
2
∣∣∑

α F α
inδR

α
nn

∣∣

¯ ζ, (32)

where ζ = 1. Again, i is the active surface, so δRii = 0.
The choice of Im(σni) = 1

2 in Eq. (31) is an approxima-
tion that leads to ζ = 1 in Eq. (32), but we can test our choice
with a simple model. The magnitude of ζ controls the col-
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FIG. 1. Avoided crossing used for the reflection probabilities in Figure 2 to
test our collapse rate (in Eq. (32)) in the vicinity of an avoided crossing. For
details of the potential energy surfaces, see Ref. 43.

lapse or decoherence rates of A-FSSH. Larger values of ζ

will result in less decoherence both within and outside the
regions of derivative coupling. In order to decide on the right
amount of decoherence we need a model that is sensitive to
how much decoherence is added. For this purpose, we use
a narrow avoided crossing as shown in Fig. 1.17, 43 Figure 2
shows the probability of being reflected on the lower adia-
batic surface as a function of initial momentum. The exact
result shows oscillations in this probability due to quantum
resonances. Standard FSSH shows oscillations as well, but the
oscillations are far too numerous and wild compared with the
exact results. The first panel in Fig. 2 shows that the choice of
ζ = 1 in Eq. (32) produces oscillations that are most similar
to the exact result. ζ < 1/2 leads to more decoherence, result-
ing in fewer and smaller oscillations. ζ > 2 results in too little
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FIG. 2. Probability of reflection on the lower surface as a function of initial
momentum. Here, we compare the exact answer with both FSSH results and
A-FSSH results for differing amounts of decoherence (i.e., different values of
ζ in Eq. (32)). (a) We compare quantum plane-wave scattering calculations
and surface hopping trajectories with fixed initial momentum. (b) and (c) We
compare quantum wave packet scattering with initial width wk = 1/(

√
2aR)

in momentum space (see Eq. (22) for a definition of aR) and surface hopping
dynamics averaged over the same width. Note that ζ = 1 appears optimal.
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decoherence and its probability of reflection on the lower sur-
face is essentially identical to that from standard FSSH (not
shown). The second and third panels in Fig. 2 show results
from quantum wave packet and surface-hopping calculations,
where the latter are averaged over initial positions with the
same width as the corresponding wave packets in the former.
The decoherence rate in Eq. (32) (with ζ = 1) proves to give
the best results.

4. Resetting the moments: Failure of the linear
approximation

We chose a constant value for σ ni in Eq. (31) in order to
ensure the stability of our algorithm. In fact, several of our al-
gorithmic choices thus far have had this objective in mind, but
the algorithm is still not completely stable in its current form.
Our final remaining problem is the robustness of the moments.
Although, the moments δR̂ and δP̂ give a good indication of
how wave packets separate, they still obey equations of mo-
tion based on a linearized approximation and are not perfectly
stable; they can lose their meaning at long times. To increase
the stability of the algorithm further we must allow the mo-
ments to be reset. If forces on the different surfaces tend to
push wave packets apart, then decoherence events are possible
and we must keep track of the moments and relative motion
on different surfaces. However, if the forces tend to pull wave
packets together, the moments become both less meaningful
and less useful, and we believe they can and should be safely
reset. By similar reasoning to what we used to derive Eq. (32),
the rate that we reset the moments should be the negative col-
lapsing rate without the extra fluctuation term. Explicitly we
propose to reset the moments with rate

1
τ ni
r

= −
∑

α

((
F α

nn − F α
ii

)
δRα

nn

2¯

)

. (33)

In the end, using Eqs. (32) and (33) we can be confident
that all moments, δR̂ and δP̂ , will always be small, and there-
fore a linearized equation-of-motion should be meaningful
and the A-FSSH algorithm should be accurate.

B. A-FSSH step-by-step algorithm

We now present a step-by-step algorithm of our A-FSSH
method in order to be as clear as possible. This algorithm is
written for N electronic states and any number of nuclear di-
mensions even though in this paper we apply it to the spin-
boson model in one nuclear dimension for two electronic
states. We have successfully tested the algorithm on problems
involving three electronic states.37

1. As in standard FSSH, we initialize a mixed quantum-
classical trajectory by fixing the initial classical coordi-
nates !R0 and !P0 and electronic wavevector !c0 at time
t = 0. We start on a specific adiabatic surface, which for
the purpose of this algorithm we call the ith surface. As
for the moments, we set δR̂ = δP̂ = 0.

2. To go from time t to t + dt, we propagate our dynamical
variables.
(a) For the nuclear coordinates, as in standard FSSH,

we propagate !R and !P according to Newton’s laws

dRα

dt
= P α

Mα
, (34)

dP α

dt
= F α

ii ( !R). (35)

(b) We propagate the electronic amplitude !c according
to Eq. (2) (just as in FSSH).

(c) Unique to A-FSSH, we propagate the moments δR̂

and δP̂ according to Eqs. (14)–(17).
3. As in standard FSSH, while the nuclei are being propa-

gated along the ith adiabatic electronic surface, at each
time step, we evaluate the probability to switch to any
other state (labeled j &= i, for instance) γ

i→j
hop . This

switching probability is chosen to be as small as pos-
sible, while still forcing the relative populations on the
different surfaces to match the norm of the electronic
amplitudes. Tully has shown5 in a straightforward man-
ner that, in a simulation time step dt, the rate is

γ
i→j
hop = −

∑

α

2P α

Mα

Re
(
dα

ji( !R)cicj
∗)

|ci |2
dt. (36)

In order to implement this hopping criterion with a sin-
gle pseudorandom number ζ ∈ [0, 1] for each time step,
we form the array

Sj =
∑

l≤j

γ i→l
hop . (37)

We set S0 ≡ 0 by definition and we know that SN = γ tot

is the total probability of hopping. Also since γ i→i
hop = 0

we have Si = Si − 1.
(a) If ζ > γ tot then we do not hop and continue to

step 6.
(b) If ζ < γ tot then there will be a hopping event to sur-

face j if it is energetically allowed where j is deter-
mined from Sj − 1 < ζ < Sj. We determine if the hop
is allowed in step 4.

4. As in standard FSSH, in order to maintain conservation
of energy when moving from the ith to the jth adiabatic
potential energy surface, we compute a rescaled nuclear
momentum on the new surface in a direction !usc chosen
to be in the direction of derivative coupling !usc = !dij .
We determine the new momentum !P new from

!P new = !P + κ !usc, (38)

∑

α

(P α,new)2

2Mα
+ Vjj ( !R) =

∑

α

(P α)2

2Mα
+ Vii( !R).

(39)
Equations (38) and (39) result in a quadratic equation for
κ with two roots in general. We choose the root with the
smaller |κ|. Other choices of rescaling direction (!usc) are
possible.12, 37
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(a) If hopping to the new state is forbidden by energy
conservation ( !P new is complex) we do not hop and
continue with step 6.

(b) If the new hop is allowed ( !P new is real) we hop and
continue with step 5.

5. Given that a hop will now occur, we must adjust the dy-
namical variables.
(a) We rescale the momentum, !P = !P new, according to

Eqs. (38) and (39).
(b) We reset the position moment, δR̂ = 0.
(c) For each electronic state k, we force the diagonal

element of the momentum moment to obey conser-
vation of energy

δP α,new
kk = ηku

α
sc, (40)

∑

α

(
P α,new + δP α,new

kk

σkk

)2

2Mα
+ Vkk( !R) = Etot,

(41)
for each k with

Etot =
∑

α

(P α,new)2

2Mα
+ Vjj ( !R). (42)

If there are two real roots to Eqs. (40) and (41),
we choose the ηk with the smallest absolute value.
If any new diagonal element of δP̂ as given by
Eqs. (40) and (41) is complex then that element is
set to zero. We set the off-diagonal elements of δ !P
to zero. Before solving for ηk, we multiply Eq. (41)
by σ 2

kk so that if σ kk = 0 we end up with δ !Pkk = 0.
(d) For the purposes of this enumerated algorithm we

switch the labels of the electronic surfaces i and j so
that we are again walking on the ith surface, and we
continue onto step 6.

6. For each component of the electronic wavevector cn with
n &= i, we determine the probability of collapse, γ

collapse
n ,

using the decoherence rate from Eq. (32). For the time
interval dt we have

γ collapse
n = dt

1
τ ni
d

. (43)

We also check to see whether the moments should be re-
set using the rate in Eq. (33) to give the reset probability

γ reset
n = dt

1
τ ni
r

. (44)

(Note: it is never possible to both collapse and reset with
respect to the same surface during the same time step
because if 1

τ ni
d

is positive, then 1
τ ni
r

must be negative.)
(a) To check for collapsing events onto each surface we

loop over n.
i. For each state n &= i we generate a random num-

ber ηn ∈ [0, 1].
ii. If ηn > γ

collapse
n , then we do not have a collaps-

ing event for that state.
iii. If ηn < γ

collapse
n , then we have a collapsing

event and the electronic amplitude on state n

becomes 0. The electronic amplitudes become

cnew
j =

{
cj /µ j &= n

0 j = n
µ =

√
1 − |cn|2.

(45)

iv. If we have a collapsing event, all elements of the
moments associated with state n are set to zero.
We end up with

δ !Rjn = δ !Rnj = 0 for all j, (46)

δ !Pjn = δ !Pnj = 0 for all j. (47)

v. Similarly, if ηn > γ reset
n , then we do not have a

resetting event.
vi. If ηn < γ reset

n , then we reset all position and mo-
mentum moments associated with the nth elec-
tronic state to zero just as in Eqs. (46) and (47).
This is the end of the loop over n.

(b) We return to step 2 and continue the algorithm.

V. SPIN-BOSON MODEL

A. Potential energy surfaces

The spin-boson model has been widely used to study
electron transfer.7, 14, 44–47 It gives us an important benchmark
for surface-hopping algorithms because it is a simple two
level system that can provide a stringent test by looking at
the rate of relaxation into one diabatic well from the other
well. For our purposes, the key point is that a typical trajectory
crosses many times through the region of derivative coupling.

The spin-boson model consists of two parabolic diabatic
electronic states coupled by a constant off-diagonal diabatic
coupling term. The most general possible Hamiltonian (writ-
ten in the diabatic basis {|1l〉, |1r〉}) is therefore

H =
( 1

2mω2x2 + Mx V

V 1
2mω2x2 − Mx − ε0

)

. (48)

Diagonalizing the Hamiltonian (48) gives the adiabatic energy
surfaces as well as the derivative coupling. They are

E1(x) = 1
2
mω2x2 − ε0

2
−

√(ε0

2
+ Mx

)2
+ V 2, (49)

E2(x) = 1
2
mω2x2 − ε0

2
+

√(ε0

2
+ Mx

)2
+ V 2, (50)

and

d12(R) = 1
2

MV

(Mx + ε0/2)2 + V 2
. (51)

The eigenvectors of the Hamiltonian (48) give the adiabatic
states in terms of the original diabatic states

|%1(x)〉 = f1(x)|1l〉 + g1(x)|1r〉, (52)

|%2(x)〉 = f2(x)|1l〉 + g2(x)|1r〉, (53)
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where

f1(x) =
√

1
2

− 1
2

Mx + ε0/2
√

(Mx + ε0/2)2 + V 2
, (54)

g1(x) = −
√

1
2

+ 1
2

Mx + ε0/2
√

(Mx + ε0/2)2 + V 2
, (55)

f2(x) =
√

1
2

+ 1
2

Mx + ε0/2
√

(Mx + ε0/2)2 + V 2
, (56)

g2(x) =
√

1
2

− 1
2

Mx + ε0/2
√

(Mx + ε0/2)2 + V 2
. (57)

As we will discuss in Sec. V C, the coefficients fi(x) and gi(x)
are necessary to convert between adiabatic and diabatic states.
We will be interested in populations on and rates between di-
abatic states even though the actual calculations are carried
out in an adiabatic basis. It is necessary, therefore, to convert
a trajectory on one adiabatic surface into an expectation value
of being on either diabatic surface using these coefficients.

The convenience of the spin-boson model is that, in the
transition state frictional regime, the transition rate is well
known. It is given at high temperature by the Marcus rate48

kl→r = 2π |V |2

¯
√

4πErkT
exp

(
− (Er − ε0)2

4ErkT

)
, (58)

which is derived from second order perturbation theory.49

This gives us an exact rate against which we can compare
results.

B. Parameter regimes

For the spin-boson model, there are six relevant energy
scales: the reorganization energy Er = 2 M2

mω2 , the temperature
kT, the driving force ε0 (sometimes denoted +G), the dia-
batic coupling V , the frequency of the electronic potential en-
ergy surfaces ¯ω, and the friction coefficient ¯γ . The diabatic
coupling V is especially important in our analysis because it
determines the adiabaticity of our system. In particular, the
Hamiltonian is considered to be in the nonadiabatic regime if
the diabatic coupling V is “small” (defined later) and in the
adiabatic regime if V is “large.”

A small diabatic coupling results in trajectories that pass
through the coupling region several times before relaxing into
a separate diabatic well, and as we have discussed above, mul-
tiple passes through the coupling region amplifiy FSSH’s de-
coherence problem. For this reason, the nonadiabatic regime
offers the surface-hopping method its most stringent test. The
parameter that determines whether the system is in the adi-
abatic or nonadiabatic regime is the Landau-Zener parame-
ter αLZ = 2πV 2

¯Ṙ|Fb−Fa |
, where Fa and Fb are the forces on the

two surfaces at the crossing point.49 In our case of harmonic
surfaces, assuming a Maxwell-Boltzmann velocity, we esti-
mate αLZ = 2πV 2

¯ω
√

2kT Er
. The nonadiabatic regime is given by

αLZ / 1, meaning that V must be small.

Having insisted on a small diabatic coupling, we would
also like to be in the transition state frictional regime, where
Eq. (58) can be used as a point of comparison. To that end, in
our calculations, γ should not be too large or too small.49, 50

On the one hand, if γ is too large, the dynamics are diffusive
and we are in the overdamped limit. On the other hand, if γ is
too small, the nuclei may no longer be in thermal equilibrium,
and we are in the underdamped limit. As is well known, to be
in the transition state limit we must have not only a Maxwell-
Boltzmann thermal distribution of momentum at the crossing
point, but also ballistic rather than diffusive dynamics at the
crossing point.49

Now, maintaining a thermal distribution on one adiabatic
state imposes constraints on the electronic transtion rate be-
tween states. Specifically, for thermal equilibrium, we require
that relaxation within one state must take place faster than
electronic transitions to another state, so that γ 0 V 2

√
ErkT

.
This places a lower limit on γ . At the same time, whether a
system obeys ballistic or diffusive escape dynamics is decided
by the characteristic time each trajectory spends in the cou-
pling region versus the friction timescale. The timescale that
a trajectory spends in the coupling region can be estimated

as the width of the derivative coupling region, V
M

=
√

2V 2

Ermω2

divided by the average speed of the trajectory
√

kT
m

. Compar-
ing the result with the timescale for the friction γ , we find
the condition

√
ErkT ω

V
0 γ . This places an upper limit on γ .

In the end, we have at least two necessary conditions for the
transition state frictional regime:

√
ErkT ω

V
0 γ 0 V 2

√
ErkT

.

C. Numerical methods

In this paper, we compare transition rates for the
spin-boson model according to standard Tully-style FSSH
(Ref. 5) (as in Sec. III) and A-FSSH (as in Sec. IV). We also
compare these rates with a simple phenomenological model
that adds decoherence to FSSH (henceforth denoted “simple
collapse”).36 For the simple collapse method, we propagate
FSSH trajectories but we collapse the electronic wavefunc-
tion whenever the particle crosses the minimum of a diabatic
well while moving away from the crossing point. More ex-
plicitly, for the normal Marcus regime, we set the electronic

wavefunction to
(

1
0

)
each time the position of a trajectory

crosses x = ± M
mω2 while moving on the lower surface headed

away from the crossing region. For the inverted regime, sim-
ple collapses occur on the upper surface for x = − M

mω2 and
on the lower surface for x = M

mω2 . This collapsing criterion
was roughly suggested by Fang and Hammes-Schiffer.15 The
reasoning is quite sensible: once a trajectory is far from the
crossing region, wave packets on the upper and lower surface
should separate, there is no longer a possibility to hop, and the
particle should “forget” that it was ever in the crossing region.
The simple collapse method essentially has the correct deco-
herence behavior and is included because it serves as a point
of reference for A-FSSH. Note that A-FSSH is preferable to
simple collapse in general because (i) A-FSSH can be used
over the entire range of ε0, including the normal, inverted,
and barrierless regimes; (ii) A-FSSH can be used even when
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the shape of the entire surface is not known a priori (unlike
simple collapse).

Although we carry out all surface-hopping dynamics on
the adiabatic surfaces given by Eqs. (49) and (50), we need to
calculate the transition rate between diabatic states. Thus, it
is necessary to convert a trajectory moving along one of the
adiabatic surfaces into a probability of being on one of the
diabatic surfaces. To do this, we use the coefficients fi(x) and
gi(x) from Eqs. (54)–(57) together with the following natu-
ral interpretation: if one is moving along the bottom (active)
adiabatic surface corresponding to |%1(x)〉, we assume that
the probability of being on the left diabatic is |f1(x)|2 and the
probability of being on the right is |g1(x)|2. Similarly, if the
upper adiabatic surface is the active surface, corresponding to
|%2(x)〉, we take that the probability of being on the left dia-
batic to be |f2(x)|2 and the probability of being on the right is
|g2(x)|2.

In order to simulate the system at finite temperature we
consider our system to be in contact with a classical thermal
bath through the nuclear coordinate. We model this contact
by adding a random force ξ and friction term γ yielding a
form of Langevin dynamics, following the work of Tully and
Beeman.51, 52 For each of the methods we study, we propagate
the nuclear trajectories along the adiabatic surfaces given by
Eqs. (49) and (50) with the additional forces due to the bath.
At each time step, the total force on the nuclear degree of
freedom is therefore

F = −dEi(x)
dx

− γp + ξ, (59)

where i is the label of the active surface that the trajectory is
moving along and ξ is a Markovian Gaussian random force
with standard distribution σ =

√
2γmkT/dt (with time step

dt). For the discrete integration of the equations of motion,
the Markov property means that the force at each time step is
uncorrelated with the force at the previous time step.

To capture the Marcus transition rates we needed to sim-
ulate the system starting at equilibrium in the left diabatic
well and transitioning to the other well. Thus, we used a
Boltzmann distribution of nuclear positions and a Maxwell-
Boltzmann distribution of momenta in the left diabatic well
as our initial coordinates. We used the initial positions and
diabatic surface of each particle to calculate both the proba-
bility of being on either adiabatic surface (i.e., choosing the
active surface) and also the electronic wavefunction (in the
adiabatic basis). In choosing the phase of the electronic wave-
function, we elected to make each component real. Specifi-
cally, the electronic wavefunction for a trajectory starting at
position x was given by
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(60)

and the probability of choosing the lower adiabatic surface as
the active surface was

1
2

− 1
2

Mx + ε0/2
√

(Mx + ε0/2)2 + V 2
. (61)

TABLE I. Energy regimes and ranges used for surface hopping calculations
(¯ = 1).

Parameter Range

Er 2.39 × 10−2

kT 9.5 × 10−4

ε0 1.8 × 10−2–3.0 × 10−2

V 1.25 × 10−5–2.00 × 10−4

ω 2.734 × 10−6–1.40 × 10−3

γ 2.34 × 10−6–2.4 × 10−3

αLZ 4.16 × 10−4–8.53 × 10−1

We sampled an average of 10 000 distinct surface-
hopping trajectories each with a time step of dt = 1.25 (for
select calculations we used more trajectories as detailed in
Sec. VI). To determine the transition rate, we plotted the aver-
age population on the diabatic surfaces as a function of time.
We fit the average diabatic population as a function of time as
an exponential rate process to obtain a transition rate. Some
of the data showed transient non-exponential behavior at short
times, but such phenomena were not significant enough to
substantially influence the rates.

In Table I, we provide the relevant parameter ranges as
adapted from Hammes-Schiffer7 (all in atomic units). Results
are independent of mass (we chose m = 1).

VI. RESULTS AND DISCUSSION

Our first test of the A-FSSH method is recovering the
qualitative behavior of the Marcus rates as a function of driv-
ing force ε0. We recently found that FSSH recovered the cor-
rect behavior,36 and so A-FSSH should do the same. Indeed,
Fig. 3 shows that both FSSH and A-FSSH show standard Mar-
cus behavior, whereby the rate increases with increasing ε0 in
the normal Marcus regime, peaking when ε0 is equal to the re-
organization energy, and then decreasing with a continued in-
crease in ε0 in the inverted Marcus region. As we would hope,
A-FSSH yields a much better approximation to the Marcus
rates than does standard FSSH.
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FIG. 3. Comparison of the calculated rates for FSSH and A-FSSH with the
expected Marcus rates as a function of ε0 (i.e., the driving force). Er = 2.39
× 10−2, γ = 1.50 × 10−4, V = 2.50 × 10−5, and ω = 4.375 × 10−5.
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FIG. 4. Comparison of the calculated rates for A-FSSH with the expected Marcus rates as a function of ε0 for a range of values of γ (i.e., the frictional
coefficient). Er = 2.39 × 10−2, V = 2.50 × 10−5, and ω = 4.375 × 10−5.

Figure 4 shows the A-FSSH rates as a function of ε0 for
a range of γ . As expected, the rates increase as γ increases
from the underdamped limit to a maximum in the transition
state limit, and then decrease again in the overdamped limit.
We had found this behavior previously for FSSH (Ref. 36) as
well. Kramer’s view of frictional effects49 does hold within
our surface-hopping models, predicting a turnover from un-
der to overdamped dynamics. Because the A-FSSH rates
only vary by a factor of about 1.5 over the full range of ε0,
Fig. 4 required more trajectories to converge the results than
other figures. We used 30 000 trajectories for A-FSSH data in
Figs. 3 and 4 as compared to 10 000 in the other plots.

In Fig. 5, we show a log-log plot of rate vs. diabatic
coupling V . As we found in Ref. 36, FSSH scales linearly
with V (incorrectly). By contrast, A-FSSH nearly matches
the simple collapse method, which scales quadratically in
V (correctly).36 Intuitively, one might expect that A-FSSH
should give even better results than the simple collapse
method because A-FSSH allows for decoherence events on
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FIG. 5. Log-log plot (base e) comparing the calculated rates for A-FSSH and
FSSH with the expected Marcus rates as a function of V (i.e., the diabatic
coupling). γ = 1.50 × 10−4, ε0 = 0.018, and ω = 4.375 × 10−5.

both the upper and lower adiabatic surfaces, while simple
collapse restricts decoherence events to the lower adiabatic
surface (in the normal regime). Physically, the A-FSSH pic-
ture is correct since wave packets can separate (or decohere)
each and every time the nuclear trajectory passes through a re-
gion of derivative coupling (in both directions). In practice, A-
FSSH results outperform simple collapse, yielding results that
are noticeably closer to the expected Marcus rate over most
of the range of V , except for very small V . Apparently, for
very small V , the A-FSSH method predicts collapsing events
less frequently and merely returns the simple collapse results.
Eventually, for truly infinitesimal V in the limit of a conical
intersection, A-FSSH might face new problems because of
its linear approximation competing with enormous derivative
couplings—but we have not experienced such a problem in
any of our calculations.

Figure 6 is an important illustration of how the different
dynamical regimes are determined by the values of γ and V

as discussed in Sec. V B. As V decreases from right to left,
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FIG. 6. Log-log plot (base e) comparing the calculated rates for A-FSSH
with the expected Marcus rates as a function of V for a range of values of γ .
ε0 = 0.018 and ω = 4.375 × 10−5.
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FIG. 7. Log-log plot (base e) comparing the calculated rates for FSSH
with the expected Marcus rates as a function of V for a range of values of
γ . ε0 = 0.018 and ω = 4.375 × 10−5.

the Landau-Zener parameter αLZ decreases as well, and the
system moves fully into the nonadiabatic regime. Figure 6
shows that it is only in this regime that any of our results
agree with the Marcus rates. This behavior is quite natural
since Marcus theory is derived from Fermi’s golden rule
(perturbation theory), and holds only when V is small. (For
this reason, we plot the Marcus rates only in the small V

regime.) Additionally, Fig. 6 illustrates how γ affects the
rates. For the larger values of γ , the system is mostly in the
overdamped regime not the transition state regime. We need√

ErkT ω
V

0 γ to be in the transition state regime, but for the
largest values of γ this condition holds only on the far left
of the plot, where our calculated A-FSSH rate always ap-
proaches the Marcus rate. Similarly, when V is large, the very
smallest values of γ press up against the other transition state
condition, γ 0 V 2

√
ErkT

. This condition affects only the far
right side of the plot for the smallest two values of γ . Overall,
Fig. 6 suggests that the A-FSSH algorithm captures the cor-
rect behavior of the rate as a function of V and γ ; by contrast,
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FIG. 8. Log-log plot (base e) comparing the calculated rates for FSSH and
A-FSSH with the expected Marcus rates as a function of ω (i.e., the harmonic
frequency). γ = 1.50 × 10−4, ε0 = 0.018, and V = 2.50 × 10−5.
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FIG. 9. Log-log plot (base e) comparing the calculated rates for A-FSSH
with the expected Marcus rates as a function of ω for a range of values of γ .
ε0 = 0.018, and V = 2.50 × 10−5.

FSSH predicts qualitatively different and largely incorrect
behavior by failing to include decoherence (see Fig. 7).

One item not addressed in Ref. 36 is the fact that the tran-
sition rate was found in that paper to depend on ω, both for
FSSH and when simple collapses were applied. To further in-
vestigate this effect, we plot in Fig. 8 the dependence of the
rate on ω. We find that for small enough values of ω, the log-
log plots of A-FSSH rates vs. ω flatten out roughly as they
should (Fig. 9). We find this behavior only for small ω, which
puts us in the high temperature limit of Marcus theory, ¯ω
/ kT. Notably, even at high temperatures, our A-FSSH re-
sults still display some weak and unexplained dependence on
ω. By contrast, the standard FSSH rates are strongly depen-
dent on ω over our entire parameter range (Fig. 10).53

In summary after gathering a great deal of data, we
find that adding decoherence corrects the major shortcom-
ings that plagued the FSSH algorithm in Ref. 36 as applied
to the spin-boson model. Additionally, we have shown that
A-FSSH, which is generalizable to more complicated sys-
tems, has the correct physical behavior for the spin-boson sys-
tem and agrees with an ad hoc simple collapse method based
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FIG. 10. Log-log plot (base e) comparing the calculated rates for FSSH
with the expected Marcus rates as a function of ω for a range of values of
γ . ε0 = 0.018 and V = 2.50 × 10−5.
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on our intuitive understanding of the physics. Not only is A-
FSSH qualitatively correct, but we find it to have a final error
in rates of only a factor of about 1.5 when compared with the
correct Marcus results.

Finally, with regards to computational efficiency, A-
FSSH is computationally slower than FSSH because it prop-
agates the moments as well as the other dynamical variables,
but the speed difference is only a factor of about 4. We expect
therefore that, for increased accuracy, A-FSSH will be well
worth the cost when running future applications to determine
rates of relaxation of photo-induced, nonadiabatic processes
in the condensed phase.

VII. CONCLUSION

We have shown that A-FSSH correctly produces the
correct qualitative Marcus rate behavior for the spin-boson
model. It captures the correct scaling with diabatic coupling
that standard FSSH is unable to reproduce. It also gives a
rate independent of ω for small enough values of ω (i.e., the
relatively high temperature limit). Since calculating rates for
the spin-boson model in the small diabatic coupling limit is
exquisitely sensitive to the degree of decoherence in surface
hopping calculations, this model problem has allowed us to
fine-tune and simplify the A-FSSH method. Clearly, future
developments in the field of surface hopping must be bench-
marked against this same model problem; modern approaches
to decoherence have rarely been tested against such cases of
multiple curve crossings. For our part, we look forward to
applying A-FSSH to higher dimensional and more realistic
systems, given that the computational cost of the algorithm
remains minimal.
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