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ABSTRACT: For chemically accurate excited state energies,
one is forced to include electron—electron correlation at a level
of theory significantly higher than configuration interaction
singles (CIS). Post-CIS corrections do exist, but most often, if
they are computationally inexpensive, these methods rely on
perturbation theory. At the same time, inexpensive variational
post-CIS methods would be ideal since modeling electronic
relaxation usually requires globally smooth potential energy
surfaces (PESs) and there will inevitably be regions of near
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electronic degeneracy. With that goal in mind, we now present a new method entitled variationally orbital adapted CIS (VOA-
CIS). On the one hand, we show that in the ground-state geometry, VOA-CIS performs comparably to CIS(D) at predicting
relative excited state energies. On the other hand, far beyond CIS(D) or any other perturbative method, VOA-CIS correctly
rebalances the energy of charge-transfer (CT) states versus non-CT states, while simultaneously producing smooth PESs—
including the important case of avoided crossings. In fact, through localized diabatization of VOA-CIS excited states, one can find
a set of reasonable diabatic states modeling CT chemical dynamics. After significant benchmarking, we are now confident VOA-
CIS and VOA-CIS-like methods should play a major role in future excited state calculations.

I. INTRODUCTION

Our research group desperately needs practical, inexpensive
methods for modeling excited states: such methods must be (i)
inexpensive and applicable to large molecules and (ii) accurate
enough to capture excited state crossings (which are essential
for understanding electronic relaxation).

Configuration interaction singles (CIS) is perhaps the
simplest approach to electronic excited states. One assumes
that an excited state wave function is a linear combination of
single excitations on top of the ground state. On the plus side,
CIS is variational, size-consistent, and most of the time, CIS-
wave functions are qualitatively correct (in terms of detachment
and attachment plots'). On the negative side, CIS energies are
simply not accurate and one cannot ascertain relative excited
state energies from a CIS calculation alone: the CIS ansatz
captures too little electron correlation and thus represents too
great a simplification of the excited state wave functions for
chemical accuracy. One cardinal failure of CIS is its notorious
overestimation of charge-transfer (CT) excited state energies
by 1-2 eV.?

The goal of this paper is to introduce a new and powerful
method that builds a variational wave function on top of zeroth-
order CIS wave function.®> The format of this paper will be as
follows. In section II, we review existing post-CIS excited state
methods and motivate our new VOA-CIS approach. In section
III, we provide the theoretical framework for VOA-CIS as well
as the computational details for extracting VOA-CIS wave
functions and energies. In section IV, we benchmark VOA-CIS
excited states versus results from high-level approaches in
excited state theory and experimental data. In section V we
present a brief and pictorial discussion of how and why VOA-
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CIS works and its close connection with time-dependent HF
(TDHF).*> We conclude in section VI with a summary of the
VOA-CIS approach and a look toward future extensions,
theoretical and computational.

Notation. Throughout this paper, ijki, abcd, and pqrs denote
occupied, virtual, and any molecular orbitals (MOs),
respectively. IJKL are the indexes for CIS states and G is
always the ground state, while IJKL will signify either the
ground or an excited state. Lowercase o will signify an occupied
entry, while lowercase v will signify a virtual entry.

Il. BACKGROUND: POST-CIS METHODS

A. CIS(D). The simplest post-CIS excited state methodology
is CIS(D). CIS(D)® proposes a perturbative improvement to
CIS, modeled roughly after CIS-MP2.” Whereas CIS-MP2
applies standard perturbation theory in the entire doubles and
triples space {ld),f;b), |<I>,-‘]‘-f“)}, CIS(D) applies standard
perturbation theory only in the doubles space; for the triples
space, CIS(D) hypothesizes a first-order wave function
correction via an intuitive ansatz, rather than strictly applying
formal perturbation theory: CIS(D) proposes that the
amplitudes for triply excited excitations are the products of
CIS singles excitations with ground-state MP2 double
excitations. The validity of this hypothesis can be tested
numerically. In the end, the CIS(D) correction can be broken
up into three parts: one component from the doubles manifold,
and two components from the triples manifold—one
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“disconnected” and one “connected” component. The dis-
connected component cancels exactly with the ground-state
MP2 energy, and the resulting two terms make up the vertical
excitation energy. The final CIS(D) energy is size-consistent
(unlike CIS-MP2) and the overall cost of the method is O(N®).

Although CIS(D) reduces the computational cost of CIS-
MP2 from O(N®) to O(N®), as N gets big, the amount of work
increases quickly. Luckily, in recent years, through the
implementation of the resolution-of-the-identity (RI) approx-
imation,®” the CIS(D) prefactor has been reduced greatly, and
currently the method is applicable to the calculation of vertical
excitation energies in small to medium-sized molecules; local
pair-natural orbital approaches can further reduce the cost.'®
That being said, CIS(D) still cannot be implemented to help
solve most problems in electronic relaxation. Beyond the failure
of CIS(D) to capture enough electron—electron correlation
energy for CT states,” the biggest culprit is the perturbative
nature of the CIS(D) ansatz itself. In general, electronic
relaxation (as mediated by phonons or nuclear motion) occurs
at nuclear geometries where several electronic states come close
together in energy; this is the entire basis of classical Marcus
theory.”’12 At such geometries, however, the use of
perturbation theory is usually not valid: the zeroth order
wave functions can still be strongly interacting and, in such
cases, the resulting CIS(D) wave functions and energy
corrections will be unreliable. Thus, in the end, CIS(D) can
be used to model only those electronic states that are well-
separated energetically; the method also fails if the Sy—S, gap
becomes too small and there is strong mixing between ground
and excited states. Note that these limitations apply to all
perturbative excited state methods.

B. CIS(D,) and CC2. As a nondegenerate perturbative
method, CIS(D) cannot deal with near-degeneracies. Among
the set of post-CIS excited state methods, CIS(D,)" is a quasi-
degenerate improvement to CIS(D). CIS(D,) was designed
around the principle of “perturb and then diagonalize”. The
CIS(D,) correction is found by diagonalizing a perturbative
approximation to the second-order response matrix for the
MP2 ground state.

Within the CIS(D,,) framework, one always approximates the
doubles—doubles block of the response matrix by excitations of
the diagonal Fock matrix. If this is the only enforced
approximation, diagonalization of the response matrix is
entitled CIS(D,), which closely resembles'* the CC2'
method. Otherwise, one can expand the self-energy of the
doubles—doubles block in a Taylor series, and with truncation
one generates CIS(D,) and CIS(D,) . Formally, CIS(D,) and
CIS(D,) require diagonalization of a dressed matrix with size
N,, X N, just like CIS; CIS(D,,) requires diagonalization of a
matrix of size N,> X N, (through several tricks help). In
practice, full CIS(D,) and CIS(D,) are significantly more
expensive than CIS(D) calculations.

Overall, the CIS(D,) suite of algorithms are a powerful
means to investigate avoided crossings between excited states,
but they suffer from several drawbacks:

e The computational cost can be prohibitive. Recently,
progress has been made to reduce the cost of CIS(D,)
through an empirically scaled opposite-spin (SOS)
approximation.'® For CC2 methods, local approxima-
tions with density fitting have also been made,'” as have
pair natural orbital approaches.'®
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e For n > 0, the CIS(D,) effective Hamiltonian is not
Hermitian, and thus, the method can fail at near-
degeneracies, especially near conical intersections where
imaginary frequencies are possible.'* To improve upon
CC2 near a true degeneracy, the algebraic diagrammatic
construction (ADC) method'® symmetrizes the response
matrix and thus one must diagonalize only a Hermitian
matrix.

e The CIS(D,) approach will not be effective when the
So—S; energy gap becomes too small, or when doubly
excited states are important.

C. ADC(2). A natural alternative to CIS(D,,) (or CC2) with
the flavor of configuration interaction is the algebraic
diagrammatic construction (ADC) method." (For a complete
set of ADC(2) references, see ref 20.) As mentioned above, the
ADC(2) method symmetrizes the CC2 response matrix and
thus one must diagonalize only a Hermitian matrix; thus, the
method is applicable near avoided crossings as well as conical
intersections. Importantly, ADC(2) yields a means to calculate
electronic matrix elements between excited states”' which is
useful for electronic dynarnics.22 Unfortunately, the cost of the
method is approximately the cost of a CC2 calculation, which
can be prohibitive for large systems, even though local
approximations are possible.”® S;—S; crossings will also be
difficult to converge (as with any single reference ground-state
theory).

Lastly, it must be noted that one can go beyond strict
ADC(2) via the ADC(2)-x algorithm23 that includes all off-
diagonal terms in the doubles—doubles block of the effective
Hamiltonian. Thus, ADC(2)—x allows for the possibility of
doubly excited states, but the cost of ADC(2)—x grows
accordingly (as N on the order of EOM-CCSD). Overall,
ADC is a promising approach for generating the excited states
necessary for describing electronic relaxation, but computa-
tional cost remains an obstacle (and Sy—S; crossings are a
potential problem).

D. CISD. According to the standard quantum chemistry
dogma, the formal answer to all problems in electronic
structure theory is full-CI. However, full-CI requires diagonal-
ization of the Hamiltonian at all levels of excitation. As such,
full-CI has an exponentially large cost and is practical only for
very small molecules. For medium-sized or large molecules, if
one is keen on configuration interaction, one must settle for
truncated-CI—which is still variational but unfortunately not
size-consistent. The accuracy of truncated CI deteriorates as the
number of electrons increases, though corrections for
recovering size-consistency are well-known for CISD.**

Now, it is important to recognize that CISD’s size-
consistency problem for excited states can be partially removed
by excluding the HF ground-state from the Hamiltonian
diagonalization. In such a case, intuitively, if we have two
infinitely separated fragments A and B, excitations localized to
fragment A (set no. 1) are entirely decoupled from excitations
localized to fragment B (set no. 2). The only problematic
complication is that we can find a third set (set no. 3) of excited
states with excitations on both fragments A and B. However,
this third set of excitations is entirely decoupled from set nos. 1
and 2, and thus, by inspection, one can pick out excited states
with size-consistent wave functions and energies. For more
details, see the Appendix.

Despite this glimmer of hope, however, we must emphasize
that straight CISD necessarily produces poor excitation
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energies. On the one hand, if the HF state is excluded,
excitation energies are always too low—after all, only the
excited states are stabilized with correlation energy. On the
other hand, if we include the HF state, CISD is known to
overstabilize the ground state’ and yield erroneously large
excitation energies (see also Figure 1 below). This failure of
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Figure 1. Comparison of VOA-CIS-G(n, 2) energies with (approx-
imate) CISD energies®® at the ground state geometry, for the first
three singlet states. The zero of energy for this figure is Epp. On the
right is the PYCM molecular structure, with the dihedral angle 7
shown with bold bonds. Note that VOA-CIS excitation energies are
close to experimental values and relatively insensitive to n for n not too
big and not too small (n € [8, 12]). Here, S, is the CT state and finds
a big correction with n = 8 (because CIS orders this state as S,). By
contrast, note that CISD excitation energy are grossly unphysical (with
E,—E, = 3841 eVY).

CISD results from the fact that the ground and excited states
are not treated equivalently: while the ground state couples
strongly to the doubles space and gains a great deal of
dynamical correlation, a CIS excited state wave function will
not relax sufficiently without inclusion of the corresponding
triples space. In the end, the variational benefits of full CISD
must be weighed against the distorted CISD absolute vertical
excitation energies. (For a discussion of multireference
configuration interaction in the context of the VOA-CIS
algorithm below, please see the Appendix.)

E. Perturbative Orbital Optimized CIS (OO-CIS). Using
all of the background above, over the past few years our
research group has been working to develop our own post-CIS
excited state methods. Given that CIS states are strongly
coupled to the space of double excitations (on the one hand)
but including entire doubles space a la CISD is counter-
productive (on the other hand), our original intuition was that
meaningful post-CIS excited state wave functions could be
obtained by partial orbital optimization. In particular, our hope
was that reasonably accurate excited state energies could be
obtained by optimizing the MOs for each specific excited state,
rather than always using the same SCF orbitals that were
optimized for the ground state. Moreover, as long as the orbital
changes were small, each excited state would keep its identity
and the algorithm would remain stable. The end product of this
line of thinking was an algorithm entitled perturbatively orbital
optimized CIS (OO-CIS).*®

According to the OO-CIS algorithm, we start from CIS wave
functions which diagonalize the Hamiltonian in the singles
space:
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It is not difficult to prove that, because of their variational
nature, the CIS amplitudes ({t'}) are fully optimized fore each
excited state. At the same time, though, the MOs for CIS states
are calculated via a HF calculation and thus optimized with
respect to the ground state; as such, the MOs are certainly not
optimized for excited states.

To achieve partial orbital optimization, note that any MO
{l¢,)} is defined in terms of atomic orbitals (AOs) by its matrix
of MO coefficients C:

Ig,) = Z ) Cup

At this point, we can perform a unitary transformation of the
MOs by introducing an antisymmetric matrix ®

®= Z 91”1 rq’ (Jpq)“

r>q

= —5,8, + 8,8,

and exponentiating”’
— 0 = 0/ ©
Cup = 22 G Up = 2 Gy (),
q q

Now the MOs are parametrized uniquely and nonredun-
dantly by ©.*” Fortunately, 05" and G5 turn out to be zero,
and only 6" survives. Assuming all components of © are small,
one can expand the energy expression up to second-order:
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Ecis(0®) = E¢i5(0) + Z
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and then minimize the CIS energy by taking a Newton—
Raphson step from the original MOs C° (@° = 0). The resulting
0 and energy expressions are

2
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Lastly, one final approximation is possible: we can
approximate OZECIS/()HuiOQb}- by the diagonal Fock matrix
elements

2
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so that the inversion in eqs 2 and 3 is trivial. In that case, let us
define the following quantities:

dx.doi.org/10.1021/ct4009377 | J. Chem. Theory Comput. 2014, 10, 1004—1020



Journal of Chemical Theory and Computation

1
——Y) = + )t ®fIHala)0")
2 bejk
g
=+, (t7(gjllab) + 7 (cillba))
bej
+ 25 (M GlIbk) + £t Gjllka))
bjk (%)
“ ea—€i+E}—EI (6)

With these definitions, the Newton—Raphson step above (eq
2) for electronic state I will yield: %" = 6" Henceforward, we
can easily construct the OO-CIS wave function for each state to
first order in 6:
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Equation 7 defines the OO-CIS algorithm.

In practice, OO-CIS has some appealing properties. First,
although we invoke orbital optimization in spirit for each CIS
state, all optimization is actually performed with the initial SCF
orbitals; this approach is completely free from cherry picking
orbitals in an active space. Second, the algorithm is incredibly
fast and not demanding.

Despite these attributes, however, the OO-CIS method is still
perturbative (like CIS(D)), and we have found empirically that
it yields significant improvement only for charge-transfer states
(and, even then, the CT correction is not large enough). Lastly,
because the excited states are nonorthogonal to the ground
state, transition moments might be difficult to extract. Ideally,
one would like an excited state approach with the speed of OO-
CIS, but the accuracy of a balanced variational calculation
(which can treat S,—S; crossings for all I, J).

lll. VARIATIONAL ORBITAL ADAPTED CIS (VOA-CIS)

With the previous background material in mind, we now
describe the VOA-CIS approach. In the spirit of CIS(D,) (and
also CIS(2)*®), our intention is to perturb-then-diagonalize,
rather than vice versa; however, unlike the case of CIS(D,,), we
will formally use the full Hamiltonian matrix rather than an
approximate response matrix. Thus, the VOA-CIS approach
can be decomposed into two primary steps. First, we will
generate a basis of wave functions in the spirit of a generalized
OO-CIS approach. On the one hand, it is computationally
cheap to generate perturbative wave functions through orbital
optimization; on the other hand, we believe that orbital
optimization should capture the most important doubles
correction for excited states. Second, we diagonalize the
Hamiltonian in the basis of all perturbed wave functions, thus
yielding variational energies and eigenvectors. All Hamiltonian
matrix elements can be evaluated through second-quantization
and, in simplified form, the matrix elements are given in eqs 17,
18, and 19.

We will now discuss these steps in more detail. In the end,
the notation for our algorithm can be cast in the form VOA-
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CIS-C(n, m); in what follows, we will explain the meaning of C,
n, and m.

A. Choosing the VOA-CIS Basis. We will define N as the
size of the VOA-CIS basis.

1. Size of CIS Subspace (n). In choosing a set of basis
functions for diagonalization, the first and most immediate
question is the number of requested excited states. Very often,
photochemical experiments can be interpreted by considering
the dynamics of the lowest 10 excited states. This fortunate
circumstance forms the basis for the entire VOA-CIS algorithm.
Effectively, the VOA-CIS approach uses CIS as a means of
generating a set of many-electron excited states as an “active”
space. We define n as the number of CIS states which must be
calculated initially (i.e, Ny = 1), and the smaller n is, the faster
the VOA-CIS algorithm will be. Although our algorlthm will
not be independent of , luckily, from our experience,” VOA-
CIS excited state wave functions and absolute energies do not
change greatly with n; n can be chosen robustly. At the same
time, though, the VOA-CIS ground-state will change
dramatically as n gets very large and the VOA-CIS energy
approaches the CISD limit; see the energy diagram in Figure 1 .
This difference in behavior as a function of n will actually be
exploited later.

Additional parameters we use are m and C. Roughly
speaking, m is an indication of how many doubles we have
for perturbed wave functions, while C tells how the ground
state should be balanced against the excited states . The details
are shown below.

2. Size of Doubles Space (m). Having picked an initial size
for the CIS subspace n (N = n), we must next address the
number of double excitations to be included in the (post-CIS)
VOA-CIS basis. As mentioned above, we will select candidate
doubles excitations using a generalized OO-CIS framework,
with the following mathematical structure: {I¥7X)
—ZhﬂgaZajl‘I‘Iéls)}. See eq 6 for a definition of &; recall that

I is the index of the CIS state from which the doubles are
generated. In general, there are three nested options for
choosing the number of such double excitations:

1. {I¥"™3} (m = 1): For the m = 1 case, VOA-CIS adds n
doubly excited wave functions to the basis, on top of the
original n CIS wave functions (Ng+ = n). These n wave
functions are exactly the same as the first order wave
functions one constructs by allowing for orbital
relaxation in perturbative OO-CIS . See equation eq 7
in section ILE above.
{I¥"Y} (m = 2): For the m = 2 case, VOA-CIS adds n?
doubly excited wave functions to the basis, on top of the
original n CIS wave functions (Ng+ = n*). These n* wave
functions include all wave functions proposed in the m =
1 case. Now, the basic idea is to expand each of the n
excited CIS states in a basis of doubly excited states that
can be generated by single excitations from those same n
excited states. This gives n* different combinations of the
form {I¥7)}. The m = 2 subspace is a clear improvement
over the m = 1 subspace because, at an avoided crossing,
excited states will begin to mix and thus, in order to
capture electron—electron correlation correctly, we must
allow for mixing between the doubly excited config-
urations generated from different CIS states.
3. {I¥Y%)} (m = 3): For the m = 3 case, VOA-CIS adds »*
doubly excited wave functions to the basis, on top of the
original n CIS wave functions (Ng+ = n®). These n® wave
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Table I. Additional Basis Functions Included Alongside the CIS States {I¥()} for VOA-CIS-C(n, m)®

C
m (@) G X
1 N Z0% (2n) 1Dy, N2 (1 + 2n) 1Dyr), b 208 (1 + 2n)
2 [QIKKY (n + n?) 1Dyr), [PIKKY (1 +n+n) 1Dy, FZE) [P OKKY (1 +2n+n?)
3 [P/KLY (n+ n%) |Pyr), [@/KLY (1+n+nd) |®yr), [Q/KLy, [POKLY (1+n+n*+n®)

aI) ]z K L= {lr 2,

..y n}. In parentheses, we give the total number of basis wavefunctions (Ny) for each option.

functions include all wave functions proposed in the m =
2 case, but there is no physical basis for including all
{I¥7Y} (m = 3) in the VOA-CIS basis. Instead, the only
justification that can be given is mathematical: notice that
the m = 3 basis is well-defined even at a point of exact
degeneracy between two CIS states. The same
conclusion is not true for the m = 1 or m = 2 subspaces.

3. Treatment of Ground State (C). The final question that
must be addressed for the VOA-CIS basis is our treatment of
the ground state. On the one hand, for an exactly size-
consistent algorithm, one should exclude the ground state from
the basis. (See the Appendix for a proof.) On the other hand,
without including the ground state, a post-CIS algorithm
cannot construct meaningful wave functions and energies
whenever the ground state is energetically close to the first
excited state (which is not uncommon far from the equilibrium
geometry). Facing this dilemma, we believe that most often the
correct choice is to include the ground-state, while also
comparing results with the case of ground-state exclusion.

In the end, just as for the choice of double spaces, we can
define three nested possible routes by which VOA-CIS can
treat the ground state. These options are defined through the
parameter C:

1. C = O: When considering the ground-state, the simplest
option is to ignore the ground state and not include the
Hartree—Fock determinant in the VOA-CIS basis. Thus,
N is unchanged. We label this option “O”. In this case,
one recovers exact size-consistency.

C = G: Vice versa, the next simplest option is simply to
include the HF determinant in the basis, which we label
the “G” option (Ng+ = 1). The G option is especially
important when the S;,—S, energy gap gets small and
ground-excited state mixing is unavoidable. In such cases,
it make sense to forego exact size-consistency for the
sake of reasonable energetics around an avoided crossing.
Moreover, ref 3 showed that, in the case of twisted
ethylene, VOA-CIS excitation energies are not changed
greatly by including the HF determinant. In fact, VOA-
CIS-G excitation energies are well-balanced; unlike
CISD, the VOA-CIS-G ground state is not overstabilized
relative to the excited states and VOA-CIS yields reliable
absolute excitation energies.

C = X: We label our third and final option for treating
the ground state with the letter “X”. For this option, we
include not only the Hartree—Fock determinant in our
basis, but we also include the doubly excited determi-
nants generated by the interaction of the HF state with
single excitations on top of CIS states.

Mathematically, just as one CIS state can be expanded in
a basis of orbital optimized CIS states, so too can the HF
ground state be expanded in a basis of orbital optimized
CIS states. Thus, just as was done previously, one can
define a set of doubly excited determinants {{¥“¥)} to
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relax the HF ground state. These doubly excited
determinants are defined analogously to eqs 5 and 6
through the intermediate quantities Y/ and 6/

! g
=Y. = (OuelHalal V) = 3t Gjllab)

(8)
yY

GG] —
ai Ji
g — &+ E¢gg

— Egg )
In section V.B, we will show that this “X” option is

closely related to the TDHF formalism.

o For the case of m = 1, the “X” option is redundant;
the electronic bases in VOA-CIS-G(n, 1) and
VOA-CIS-X(n, 1) are exactly the same (Np+ = 1).

e For the case m = 2, we include all {{¥%"}}, and so
we set Ny + = n.

o For the case m = 3, we include all {I[¥9%)}, and so
we set Ng+ = n’.

4. Synopsis. In the end, there are as many as 9 (or really 8)
different flavors of VOA-CIS . Henceforward, we will use the
notation VOA-CIS-C(n, m), as defined in Table I . A priori, it
would appear difficult to predict the optimal algorithm. Luckily,
according to our experience, for large enough #, the relative
energies among excited states remain almost unchanged for all
choices. That being said, though, choosing the absolutely best
ground-state option can be tricky and absolute excitation
energies can change with choice of method. Thus far, if we
seek the best absolute potential energy surfaces—including
geometries far from equilibrium—VOA-CIS-G(n, 2) seems to
be the best choice.

B. Matrix Elements for VOA-CIS. Having constructed a
well-defined basis for excited state wave functions, we must
now diagonalize the Hamiltonian. The necessary matrix
elements for the Hamiltonian (H), overlap (S) and dipole (R

= (X, Y, Z)) operatgrs are quite similar. Of course, the matrix
elements for S and R are simpler than those for H in that the
former are purely single-electron operators. All necessary matrix
elements are given in eqs 17, 18, and 19 . For convenience, we
use several convenient intermediate quantities defined below:
in eqs 10—16, M can be of any size while A, B, C, and D are all
of size N, X N,:

Lr(A) = Z (pillqa)A,,

(10)
L(M) = Y (pbllqa)M,,
ab (11)
L2M) =) (pjllaipm,
ij (12)
Tai(A) = LZ?(A) + z ‘F;;bAbt Z aj ]z
b (13)
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K.,(A, B) = LUp(AB") — LI(B'A)
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(q)HFlHllPIéIS> =0

(D HIWTKY = 2 0J(® . Ha a|¥F)

=3 97" (ijllab)

abij
_ 61] (Lua(t ))T

(WL JHW TRy = 97 (—2y™K)

<©HF|X|®HF> = Xurp

1 I i
(Wil XIW) = OpXyp +t (Xt - tX,,)

Z elv]aalt

abij

(PR XTI (WX1aa,Xa]a WXy

= +(t545)(07-0" )Xy
+ (50T (07 +5) Xy

— MO, 0™ 5, ) Xy
~ M@0V, 017 K (x,t
, (X,,0" -
+ (£ (Xt = £%,)) (070"
+ () (07 (x,,0" -
+ (50" (5 (x,,0" -~

X,,)-0" ) (<67

— M(O7, K ¥

+ (Xt =t

0"X,,))

0"'x,,))

(14)
(13)
(16)

(17)

K’ _ tK’XOU))

0"'x )
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<CDHF|X|lPéIS> = fL'Xuo
(D XKy = 0
(PagXIPTSy = + (¢-07)(#X,,,)

+ (5007 x,,)

- M(t4, ¢5, x,,, 67) (18)
(DlSIDy) = 1
<TICIS|S|‘I%IS> = 51]
WUKgpT Ky — > 5’;;, Jol (P¥lafa,Salal¥C)
abij
= +(t55) (070"
+ (50T (0V-+X)
— M7, 0™, ¥, )
(DISIPE) = 0
(DS = 0
(WL JSwTKy = o (19)

In algorithm 1, we provide a flowchart for how we have
calculated VOA-CIS to date. Though this algorithm is not yet
optimal or parallelized, it offers the reader a taste of how easy
VOA-CIS energies and wave functions are to compute. In this
flowchart, we define N, to be the number of §'s.

IV. RESULTS

The VOA-CIS algorithm was implemented in a developmental
version of the Q-Chem® software package. We will now
describe the results of applying the VOA-CIS algorithm to a
broad range of photoexcitable organic molecules.

A. PYCM. 1. Absorption. Over the last year, our research
group has focused a great deal of attention on the molecule in
Figure 1 (abbreviated PYCM for 2-(4-(propan-2-ylidene)-
cyclohexylidene )malononitril).>' Experimentally, PYCM has a
low-lying CT absorption peak at 36 800 cm ™" (4.56 V), where
the donor (D) is the methylene group and the acceptor (A) is
the dicyano group. Above the CT state, there is also a local A
— A* excitation absorption peak on the cyano groups at 43 900
cm™! (5.44 V) (both in n-hexane at 20 °C).

In Figure 1, we plot the dependence of the VOA-CIS
energies (VOA-CIS-G(n, 2)) on the number of states n. All
calculations were performed at the ground state geometry with
the 6-31G* basis set (optimized with MP2), and we plot
energies for the ground state and the first two excited states. S;
is the CT state and S, is the locally excited state. On the right-
hand s1de of Figure 1, we identify (approximate) CISD
energies.*® Recall that CISD energies are equivalent to VOA-
CIS energies for n = oco. Similar to our previous results for
ethylene in ref 3, in Figure 1 we find again that CISD vastly
overstabilizes the ground state; the vertical excitation energy of
S, is a whoppingly unphysical 38.41 eV according to CISD.

By contrast, VOA-CIS-G(12, 2) yields far more balanced
excitation energies than straight CISD, with S; having an
excitation energy of S5.12 eV, which compares well with
experiment (4.56 eV). Moreover, our results are not highly
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Algorithm 1: VOA-CIS algorithm

1: > Calculate Y17, 77
2: forI=1:ndo > Calculate Y17, 977
3: for J=1:ndo
4: A= tI; B=t’
—SYH = + LA (B) A~ 5 AuLiT(B)
J
+Lu(ABT)  —L3(BTA)
yiJ
0 = gt
Egis — Egs + €0 — €
5: end for
6: end for
T
8: for J=1:ndo > Calculate Y¢7, 967
—¥E = (e
Y3’
eG_J - _ ai
a Eé}s - EHF + €q — €4
9: end for
10: Np=n?+n
11: Ng=n+14+n>+n?
12:
13: for I-J= 1: Ny do > Normalize 677
14: GIJZGIJ/ |91J|
15: end for
16:
17: for I=1:n do > Save expensive matrices
18: Save L29(t1), Fai(t!)
19: end for
20: for IJ=1: Ny do .
21: Save L22(6"7), F..(6")
22: end for
23:
24: for I=1:n do
25: for J=1:n do
26: A=t;B=1t’'
27 Save Kab(t,t) = L2V (ABT) — £25(BT A)
28: Save K;;(t,t) = Lf;’(ABT) - Ef;’(BTA)
29: end for
30: end for
31: for IJ=1: Ny do
32: for K=1:n do
33: A=0"7,B=1t¥
34: Save Kap(8,t) = L2V (ABT) — £29(BT A)
35: Save K;;(0,t) = E;’}’(ABT) - L‘,;’;’(BTA)
36: end for
37: end for
38: > Construct the Hamiltonian
39: for |¥1) € { |®ur), |¥és), [T ) } do
40:  for [Ug) € { |®ur), |¥is),|PTVE) } do
41: Save Hio, 512, ﬁm
42: end for
43: end for
44:
45: for i=1: N do > Normalize Diagonals
46: Factor= \/S(t, %)
4AT: for M € {H, S, ﬁ} do
48: M(i,:)/ = Factor
49: M(:,i)/ = Factor
50: end for
51: end for .
52: > {H,S,R,Ngp}
53: Hv = SvE — {’l}i,Ei}, i=1,2---Np
54: {v;} = {R., Oscillator Strength f;}

dependent on #; the energy of the S, state changes sharply at n
= 7 because the CT state is the seventh excited state according
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to CIS (but the CT state is the first excited state according to
VOA-CIS). Finally, we mention that that VOA-CIS-G(12, 2)
and VOA-CIS-O(12, 2) find very similar energies here for S,
S,, and S, relative to the original ground-state energy Eyp (not
shown): —0.46, 4.66, and 5.69 eV versus 0.00, 4.66, and 5.66
eV. Altogether, on the basis of its reasonable excitation energies
and its weak dependence on n, we find this data very
encouraging and supportive of our claim that meaningful
excited state energies can be found by diagonalizing only a sub-
block of the CISD matrix.

2. Smooth PES and Emission. Regarding emission,
experimentally the lower-lying PYCM CT state decays with
measurable fluorescence, while the non-CT excited state decays
exclusively radiationlessly. Verhoeven et al.** have postulated
that these experimental signatures can be explained by breaking
the ethylenic double bond connecting cyclohexane to the
dicyano groups. More specifically, they have proposed an
avoided crossing between the S, and S, excited states along the
torsional angle (7). According to the Verhoeven picture, the S;
excited state lives in a weak local minimum that can radiate to
the ground state, while the S, state undergoes an ultrafast cis—
trans isomerization back to the ground state after photo-
excitation. See Figure 7 in ref 32.

To simulate this putative relaxation process, we have
investigated the PES of PYCM as follows. First, we performed
a geometry optimization for the first excited state (S;) at the
CIS level. Although we had no confidence in the accuracy of
the CIS method to generate excitation energies, we reasoned
that if twisting a double bond were really a robust feature of
PYCM, then CIS approach should find an optimal structure
with the ethylenic groups pointed out of plane; indeed, our
results confirmed such a geometry. Second, apart from the
dihedral angle 7 shown in Figure 1, (ie. the dihedral angle
along the cyclohexane-dicyano group double bond), we froze
all the other geometrical coordinates in PYCM . At equilibrium
7 is 0° . Then, we calculated the PESs along 7 to learn about
electronic relaxation, and we found a small barrier for the S,
state between 7 = 0° and 90°.

In Figure 2, we plot VOA-CIS energies (left-hand side) and
relative dipole moments (Ifi,l = Ifi, — Jig, right-hand side) as a
function of the torsional angle 7, for a few different VOA-CIS
parameter options. We plot the first four singlet states, Sy—S;,
with S, being the ground state. From the dipole moment plot,
one can see that the CT state ID*A™) changes its adiabatic
surface as a function of 7, moving smoothly from S, (red) to S,
(green) as 7 goes from 0° to 90° . Conversely, the locally
excited state [DA*), changes its surface as well, moving
smoothly from S, to S; . In Fi%ure 3, these VOA-CIS findings
are confirmed by EOM-CCSD™ data, where we show that both
methods (VOA-CIS-G(12, 2) and EOM-CCS(D) yield very
similar absolute dipole moments for S,. From the energy plot,
we compute that the corresponding avoided crossing occurs
when 7 is around 40°. Thus, VOA-CIS captures PYCM’s
experimental features described above and, in the process,
highlights the power of a variational method near an avoided
crossing.

To underscore the importance of a variational method, we
provide a comparison with CIS(D) in Figure 4a. Here, although
CIS(D) finds the correct excited states in the 7 = 0 and 7 = 90
limits, because the method is perturbative, CIS(D) PESs and
dipole moments are not smooth (and in fact, completely
distorted) along the 7 coordinate. In part b, we show results
from SOS-CIS(D,) the scaled-opposite version of the CIS(D,).

dx.doi.org/10.1021/ct4009377 | J. Chem. Theory Comput. 2014, 10, 1004—1020
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Figure 3. i, (a.u.) for S; as a function of torsional angle 7, for EOM-
CCSD and VOA-CIS-G(12, 2) . Note that both methods find very
similar geometries for the avoided crossing as a function of 7.

Recall that the CIS(D,) suite of methods were designed to
handle quasi-degenerate excited states. As expected, SOS-
CIS(Dy) curves are much smoother than CIS(D) curves.
However, numerically, we find that SOS-CIS(D,) excitation
energies are problematic. In particular, at the equilibrium
geometry 7 = 0°, which should be far away from the crossing,
SOS-CIS(D,) predicts that the ID*A™) and the [DA*) diabatic
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Figure 4. CIS(D), SOS-CIS(D,), and TD-DFT (B3LYP and wB97x)
energies (using the same reference energy as in Figure 2) and
corresponding dipole moments (relative to the ground state) Ifi.ql as a
function of torsional angle 7.

states should be strongly mixed together in the S; and S,
adiabatic states, according to the dipole moments. Thus, SOS-
CIS(D,) would appear not to stabilize CT states enough; this
statement is confirmed by the fact that SOS-CIS(D,) predicts
that S; should have a much larger oscillator strength than S,
(more than a factor of 2). Experimentally, the exact opposite is
true: S, is much brighter than S; (which is also predicted by
VOA-CIS). As a side note, we showed in ref 3 that CIS(D) also
does not stabilize CT states enough, though CIS(D) does
better than SOS-CIS(D,) and much better than straight CIS.

Figure 4c and d present time-dependent DFT (TD-DFT)
results, using the exchange-correlation functionals B3LYP** and
wB97x>° respectively. The former shows a large gap (~2 eV)
for S; and S, at 7 = 0°, which is significantly larger than any
other method (and the experimental data, 0.88 eV as well).
Moreover, the predicted crossing of diabatic states is incorrectly
around 70°. These errors are likely a reflection of the well-
known failure of TD-DFT for CT states®®™*' when there is no
long-range correction.>>*73?

By including long-range exchange, ©®B97x”° performs much
better than B3LYP in generating balanced CT vs non-CT
excited states, and it locates an avoided crossing near 30° (in
agreement with EOM-CCSD and VOA-CIS).

Finally, around 7 = 90°, we found an intersection between S,
and S,. Avoided crossings between ground and excited states
are common for systems that decay vibronically, and as for all
near degeneracies, an accurate energetic description can be
made only by invoking a variational electronic structure

dx.doi.org/10.1021/ct4009377 | J. Chem. Theory Comput. 2014, 10, 1004—1020
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method. For PYCM, at the Sy—S; crossing, it is a locally excited
state IDA*) that is mixed together with the ground state.

For a faithful and smooth representation of a crossing, one
must treat all ground and excited states on equal footing. Note,
however, that all methods in Figure 4 ignore S;—S; mixing and,
as such, one often finds erroneous potential energy surfaces
(e.g, So—S; conical intersections with the wrong topology).54
Among the suite of VOA-CIS methods, VOA—CIS—O(n, m)
has the exact same problem; in fact, VOA—CIS—O(n, m)
predicts that S, can have a lower energy than the ground state
energy Eyp. Fortunately, using VOA-CIS-G(n, m) or VOA-CIS-
X(n, m) we can safely include the ground state wave function
while barely changing with relative energies among the excited
states. This fortunate state of affairs reflects the strengths of
VOA-CIS as a variational method.

3. Diabatization with Boys Localization. Having calculated
smooth adiabatic potential energy surfaces through the VOA-
CIS algorithm, one can make a preliminary analysis of
electronic relaxation processes through diabatization. In the
Appendix, we briefly review Boys localization as a tool for
generating localized diabatization. Using Boys localized
diabatization, in Figure S we plot the energies and relative

(@ (b)
2l : PEPUIPRRE S g
- 16
s JEE N
2 RN -,
w, .
h . 12
- N
e9(7)(7)6*_)(»*x_ib,x,*ix«x»*’*‘?’
a ) ) S ) 8
0 20 40 60 800 20 40 60 8
(°) (°)

Figure S. (a) VOA-CIS-G(12, 2) energy and (b) Ifiyl relative to the
ground state, as a function of torsional angle 7, for both adiabatic
(labeled as 1, 2) and diabatic (labeled as a, b) states. In part a, the
diabatic coupling h, is also shown. The zero of energy here is E, at 7 =
80°.

dipole moments from VOA-CIS-G(12, 2), for both adiabatic
states (S; and S,) and their corresponding diabatic states for
the PYCM molecule (again, as a function of the torsional angle
7). States 1, 2 and a, b represent adiabatic and diabatic states
respectively. As would be expected in an avoided crossing, the
energies of diabatic states a and b do cross near 7 = 40°.
Moreover, in part b, the dipole moments show that diabatic
state a is indeed the CT state, characterized by a large dipole
moment; whereas state b is a non-CT excited state. Thus, Boys-
localized diabatic VOA-CIS is in agreement with the
experimentalist’s picture of PYCM, and we may conclude that
the VOA-CIS algorithm gives us a meaningful starting point for
studying electronic relaxation.

Lastly, beyond individual surface energies, Figure S provides
us with a plot of the diabatic coupling h,, (in part a) as a
function of 7. According to the Condon approximation,® one
assume that 1 is a constant at all geometries. From the figure,
however, we see that h,, increases smoothly with 7, so that the
absolute value of h,, at 7 = 80° is roughly twice as big as the
value at 7 = 0°. This form of the diabatic coupling will be
important for calculating the physical relaxation time for
PYCM.
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B. Benchmark Molecules. As another test of the VOA-CIS
method, we study the 28 small to medium-sized molecules*®
recently benchmarked by the Thiel group. This rich set of
organic test molecules includes unsaturated aliphatic hydro-
carbons, aromatic hydrocarbons and heterocycles, carbonyl
molecules (including aldehydes, ketones, and amides), and
nucleobases. The relevant excited states are usually of valence
character, though several Rydberg states are also included;
nominally, all vertical excitations can be classified as either ¢ —
¥, n — m* or n = 7. In ref 56, the Thiel group provided
singlet and triplet energies, as calculated by a variety of different
methods, including CASPT2, CC2, CCSD, and CC3.

In this work, we have performed VOA-CIS calculation for all
singlet excited states considered by Thiel et al., specifically 104
calculations. We restricted ourselves to singlets because we do
not yet have operational VOA-CIS triplet code. All calculations
were performed with the TZVP basis set and we used the
geometries as provided in ref 56. Using the symmetry of each
electronic state, we were able to compare our VOA-CIS data
with all other electronic structure data in Table V in section
VILC (Appendix).

1. Method 1 for Quantifying Accuracy: Absolute Error. In
order to compare VOA-CIS data quantitatively versus the Thiel
benchmarked data, two different approaches seem intuitive. On
the one hand, we can use the errors from the absolute
excitation energies. To be precise, assume we have two sets of
energies obtained from different methods, one labeled std for
reference, and the other labeled trial for our new data. For the
mth (m = 1,2, ..., 28) molecule, assuming we get n,, states, then
for each state j, we can define an absolute error for that state:

__ ptrial
mj — Em,j -

std
Err E,;

With this in mind, we can estimate the overall quality of the
VOA-CIS method by computing the mean value of these
absolute errors for each molecule m (Err,,;):

n"l
Z;’:l IErrm,jl

n

Err®™ =
" (20)

m

2. Method 2 for Quantifying Accuracy: Relative Error.
Beyond absolute excitation energy errors, another option is to
analyze the VOA-CIS method through relative excitation
energy errors. Because VOA-CIS was designed to optimize
orbitals and thus rebalance relative vertical excited state
energies (rather than absolute vertical energies), we might
expect to see better performance for relative energies according
to VOA-CIS. In fact, for a few cases, we find that VOA-CIS
tends to underestimate excitation energies—for instance, in
section IV.D, we will show that VOA-CIS consistently
underestimates absolute vertical excitation energies of Rydberg
states. Nevertheless, even with Rydberg states present, the
method VOA-CIS does find much more accurate relative
excited state energies than absolute excited state energies. With
that in mind, we can define a simple measure of the relative
error of VOA-CIS for molecule m as

n, 2

m 2

M

(1)

(Since n,, can be 1, it is not convenient to define the
denominator in eq 21 as n,, (n,, — 1) as would be standard for a
variance calculation.)

dx.doi.org/10.1021/ct4009377 | J. Chem. Theory Comput. 2014, 10, 1004—1020



Journal of Chemical Theory and Computation

Notice that, if there were two sets of excitation energies with
the following form,

x:,ffjal = xfnts +¢,, j=1,2,.,n,
then Err®® would give the overall shift Ic,,|, while Err'® is exactly

0, according to the definitions above. For this reason, it is clear
that Err*™ and Err™ offer two important and complementary
means of assessing the validity of the VOA-CIS algorithm.

3. Results. In Figures 6 and 7, we plot Err™ and Err™
respectively for the 28 different molecules in Thiel benchmark
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Figure 6. Absolute errors (Err™) of CIS, VOA-CIS-G(12, 2), and
CIS(D) as compared with different “standard” methods. “Best” here
refers to the numerical values which Thiel et al. have judged most
accurate.>®

set. Now unfortunately, as the Thield group emphasizes, it is
not usually possible to conclude which reference method is the
most accurate among the list of CC2, CC3, EOM-CCSD,
CASPT2 and postprocessed experimental data. As such, in
Figures 6 and 7, we compare VOA-CIS versus all possible
references, and we do the same for CIS and CIS(D). Both
VOA-CIS and CIS(D) vastly outperform CIS, and most of the
time, VOA-CIS closely follows CIS(D), suggesting that the
latter two methods are nearly comparable. While CIS(D) does
perform slightly better than VOA-CIS at vertical excitation
energies, this discrepancy is not very surprising: CIS(D)
includes all doubles and even triples at some level of
perturbation theory, while VOA-CIS includes only a small
subset of the doubles space. At the same time, by being a
variational method, VOA-CIS works very well far away from
the ground-state geometry, where CIS(D) fails. Furthermore,
the Thiel benchmark set does not include any charge transfer
complexes, where CIS(D) is unreliable.?
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Figure 7. Relative errors (Err™) of CIS, VOA-CIS-G(12, 2), and
CIS(D) as compared with different “standard” methods. “Best” here
refers to the numerical values which Thiel et al. have judged most
accurate.56

Future work in this arena might well benefit by further
extending the basis of the VOA-CIS Hamiltonian into the
triples manifold, in order to give the method additional
energetic accuracy. Currently, the VOA-CIS-G Hamiltonian is
very small (dimension n* X n”* roughly), and improvements in
the VOA-CIS algorithm may well be possible with only
minimal cost.

C. CH,0. For our final two test cases, we choose small
organic molecules where Rydberg states are embedded in
valence states. As the reader will see, these cases present
difficulties for the VOA-CIS algorithm. We begin with
formaldehyde.

Because of a plethora of Rydberg states mixed with valence
states, for accurate results on formaldehyde, one is forced to use
a large basis replete with diffuse functions and then one must
hope for a balanced measure of the energies of valence states
versus Rydberg states. When using a big basis set
6-311(2+, 2+)G(d, p), EOM-CCSD almost recovers exper-
imental data; for the standard suite of post-CIS methods out
there (CIS(D), CIS(D,), SOS-CIS(D,)), each successive
method improves on the accuracy of its predecessor.'®

In Tables II and III, we present energies and oscillator
strengths respectively, for CIS, TDHF, VOA-CIS-G(14, m)
with m = 1, 2, 3, EOM-CCSD, and experimental data.
Experimental state assignments are from ref 16. VOA-CIS and
CIS excited states were matched up according to wave function
overlap. In the case of VOA-CIS, we find that our results closely
follow experimental data, with the exception of the S, state. For
the most part, where experimental evidence is available, the
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Table II. Comparison of Excitation Energies for CH,O from various ab initio methods with experimental data”

no. Ecis Erphr E,

1 4.48 4.30 3.56
2 8.64 8.63 7.03
3 9.37 9.36 7.78
4 9.46 9.08 8.78
S 9.67 9.42 8.85
6 9.67 9.59 7.90
7 9.78 9.78 8.07
8 10.61 10.61 8.87
9 10.87 10.86 9.13
10 10.89 10.86 9.22

E,
3.51
7.0S
7.91
8.81
9.01
8.02
8.19
9.02
9.28
9.34

E; Egom.cesp By state
3.58 3.95 4.07 v
7.12 7.06 7.11 R
7.98 7.89 7.97 v
891 10.00 R
9.08 8.00 R
8.05 8.14 v
8.26 8.23 8.37 R
9.12 9.07 8.88 R
9.37 9.38 R
943 9.27 R

“Note the almost perfect recovery of experimental data from VOA-CIS except for the first state. E,,, m € {1, 2, 3} corresponds to VOA-CIS-G(12,
m). Nuclear geometries are optimized with MP2/6-31G* (following ref 16). EOM-CCSD and experimental data are also from ref 16. “Valence (V)

and Rybderg (R) state assignmments are cited from ref 6.

Table III. Comparison of Oscillator Strengths for CH,O
from Various ab initio Methods”

# fas Sroue h 1> f3 from-cesp
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0227 0.0216 0.0096 0.0115 0.0123 0.0160
3 0.0467 0.0456 0.0390 0.0357 0.0397 0.0376
4 0.2606 0.2219 0.1335 0.1414 0.1312 02217
S 0.000S 0.0003 0.0001 0.0000 0.0000 0.0482
6 0.0160 0.0203 0.0338 0.0358 0.0318 -

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.0143 0.0138 0.0023 0.0018 0.0023 0.0115
9 0.0023 0.0025 0.0004 0.0006 0.0000 0.0330
10 0.0059 0.0033 0.0674 0.0516 0.0417 0.0193

“.» m € {1, 2, 3} corresponds to VOA-CIS-G(12, m). Nuclear
geometries are optimized with MP2/6-31G* (following ref 16).

difference between VOA-CIS and experiment is within 0.2 eV,
much smaller than typical CIS data.

These are encouraging features of the VOA-CIS algorithm.
For this problem, we find that VOA-CIS can actually address
Rydberg states quite well (and with a much cheaper cost than
EOM-CCSD). Nevertheless, the reader should note that VOA-
CIS and EOM-CCSD oscillator strengths are quite different,
often by a factor of 2.

D. C,H,. For our final test case, we now show a clear failure
of the VOA-CIS approach: the molecule ethylene. Following
the work of Martinez et al,*”*® many researchers have studied
the photochemistry of C,H,; after photoexcitation, the
molecule is quickly funneled through a conical intersection
where it pyramidalizes while also breaking a double bond to
yield a cis—trans isomerization. Ethylene photoisomerization is
a prototypical model system for photochemistry.

For ethylene, even more so than formaldehyde, at many
geometries the lowest-lying states are dominated by Rydberg
states (rather than valence states). In fact, at the equilibrium
geometry the lowest lying few states are all Rydberg states
(R(3s), R(3p,), R(3py), and R(3p,)) for C,H,, except for one
valence state 7 — 7*.>° For the most part, the Rydberg states
were ignored by early nonadiabatic dynamics calculations® that
focused on valence states instead; at the same time, however,
the electronic structure community recognizes ethylene as a
difficult test case for electronic structure precisely because of
valence-Rydberg mixing.

With this in mind, we have sought to test the VOA-CIS
method on ethylene, and to check whether we can find accurate
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potential energy surfaces. In ref 3, we reported strong results
for twisted ethylene, where our results matched up well with
MRCI results; but for a twisted geometry, all low-lying excited
states for ethylene are valence states. In this paper, in Table IV
we report results for ethylene at the ground-state geometry,
where most Rydberg state compete lie energetically below any
valence states.

Table IV. Comparison of Excitation Energies for C,H,”

no. Ecig E, E, E, Eexp state?
1 7.12 5.84 5.83 6.13 7.11 R (3s)
2 7.71 6.47 6.49 6.79 7.80 R (3py)
3 7.74 6.98 7.0S 7.37 7.60 \%

4 7.86 647 6.48 6.77 8.01 R (3p,)
S 8.09 6.74 6.79 7.11 8.29 R (3p,)

“E,, m € {1, 2, 3} corresponds to VOA-CIS-G(12, m). Nuclear
geometries are optimized with MP2/6-31G* (following ref 16).
Experimental data is also from ref 16. “Valence (V) and Rydberg (R)
state assignments are cited from ref 59.

Unfortunately, from Table IV, we find that the VOA-CIS
method does poorly in this case. In particular, we find that
Rydberg states are strongly stabilized by the VOA-CIS method,
while (perhaps unsurprisingly) the ground state does not gain
much correlation energy by orbital relaxation of Rydberg states.
As a result, the VOA-CIS vertical excitation energies in Table
IV are all too low (by 1.0 to 1.5 eV). Even the CIS results agree
much better with the experiment than VOA-CIS . Lastly, and
worst of all, VOA-CIS does not find the correct relative
energies for this example. Over all, this molecule highlights that
VOA-CIS is not a good option for electronic structure
problems dominated by Rydberg states. Luckily, our interest
is in condensed phase chemistry, and Michl has argued
convincingly that Rydberg states will not be important in most
solvents.’

V. DISCUSSION

Having demonstrated the strengths of the VOA-CIS algorithm
(as well as its limitations), we now want to address two subtle
points about how the VOA-CIS algorithm works, which may
also give insight into its performance.

A. Visualizing the # Matrix for Orbital Relaxation. The
VOA-CIS algorithm finds an improved balance between CT
and non-CT excited states via orbital relaxation. To that end,
one can ask a very simple question: what is the nature of that
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orbital relaxation for the case of a CT excited state? To answer
this question, in Figure 8, we visualize the attachment—

X xR

Gdet

tdet att att

Figure 8. Detachment and attachment plots of t and @ for the CT state
for PYCM.

detachment densities’ of the ¢ matrix, together with the
normalized 6% matrix associated with a CT CIS state (IP5)).
In other words, for the latter we consider the electronic density
of the state I¥) = Y @"a’a|®;). In analogy with standard CIS

ai At
densities, the attachment—detachment densities for &% are

det 11 nII

= z Hat ea/
(22)

Ay = Z 0Oy
(23)

From Figure 8, one can easily infer that, in the case of a CT
excited state, according to VOA-CIS, orbital relaxation remains
entirely local. Thus, even though a CT state is characterized by
one bare electron moving a long distance from detachment to
attachment, VOA-CIS predicts that the subsequent energetic
drop in energy caused by electron—electron correlation is due
to local orbital relaxation. This local nature of electronic
shielding is consistent with the simple He, example studied in
ref 2 and suggests that local correlation approaches® on top of
CIS might even be possible.

B. Relationship with TDHF. In broad terms, the VOA-CIS
X option stipulates that, by considering the set of CIS states,
one can introduce wave functions into the electronic basis that
help to capture the dynamical correlation of the ground state.
For the sophisticated quantum chemist, this language bears the
signature of TDHF, and indeed, there is a close connection
between TDHF and the VOA-CIS-X(n, m) algorithm. We will
now demonstrate as much.

Using the language of ref 5 for this section only, the TDHF**
excitation energies and quasi-wave functions are defined via

(o 2= S5

B* A*J\Y v 0 —-1\Y
in which @ = E¢g — Eyy is the excitation energy, and the
corresponding matrix elements are

(24)

A = 5ij5ub(€u - &) + (ajllib)
Biu,jb = (abl|ij) (25)
Now, let us write out eq 24 as two separate equations:
AX + BY = wX
B*X 4+ A*Y = — wY (26)

Setting B = 0 corresponds to standard CIS theory (or the
Tamm-Dancoff approximation for TD-DFT).
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If we now stipulate that the B matrix should be a first-order
perturbation in the Hamiltonian relative to CIS, while the Y
vector should be the first-order correction to the wave function,
we notice that, in eq 26, the first equation is second-order in Y,
while the second one is first-order in Y. At this point, one can
solve for Y in a straightforward manner via perturbation theory.
If one further approximates that A is diagonally dominant when
computing the A~! matrix, one arrives at the final form:

o _Z (abllij)Xy; _ (®yplHa a i)
b w+eg — ¢ & — &+ Ecg — Egp 27)

Equation 27 is identical to eq 8 (up to a constant factor).
This connection is a strong endorsement of our VOA-CIS
algorithm. The usual interpretation of the Y is a “de-excitation”
of the ground state relative to a singles wave function, or in
other words, a doubly excited contribution to the ground-state.
Thus, it would appear that the VOA-CIS algorithm is an
extension of TDHF to include the electron—electron
correlations that excited states inflict on each other (not just
on the ground state). In the future, it would be interesting to
compare the ground-state correlation energy produced by
VOA-CIS-X(n, m) with the TDHF (or RPA) correlation
energy.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we have presented the VOA-CIS algorithm and
benchmarked its performance across a series of interesting
photoexcitable organic molecules. VOA-CIS is a variational
post-CIS electronic structure theory method that generates
smooth and (usually) accurate potential energy surfaces; it
works well for isolated energies or when there are degeneracies
present. The method will not work well for molecules where
Rydberg states dominate the excited state spectrum. The
essential input for the VOA-CIS algorithm is the number of
CIS states requested n; otherwise, the algorithm can be viewed
as a blackbox approach. In many cases, VOA-CIS achieves
energetic accuracy comparable to much more expensive
methods and with a much cheaper cost.

Looking forward, our next goals in developing the VOA-CIS
algorithm are threefold. (1) We plan to optimize our VOA-CIS
code and implement a completely parallelizable algorithm. (2)
We will explore the possibilities of incorporating triple
excitations into the VOA-CIS algorithm for extra accuracy.
(3) We will develop analytic gradients and derivative coupling
for VOA-CIS . In the end, we believe the VOA-CIS algorithm
can become a robust algorithm for studying electronic
relaxation in almost all organic chromophores.

Vil. APPENDIX

A. Localized Diabatic States

For photo-excited systems undergoing electron or energy
transfer processes, the initial and final states pre-transfer are not
always adiabatic states ({I®)), J = 1, 2, ..}). Recall that, by
definition, adiabatic states are the eigenvectors produced by
diagonalizing the molecular electronic Hamiltonian at a given
nuclear geometry. In a condensed phase system, however,
solvent is often ignored which can lead to unstable adiabatic
electronic states. Moreover, the derivative couplings to nuclear
motion can be significant, and thus lead to a complete failure of
the Born—Oppenheimer approximation. For both of these
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Table V. Comparison of VOA-CIS Energies with Results from Other Excited-State Approaches®

name no.mol no.S no.CIS no. VOA-CIS CASPT2  CASPT2 CC2 CCSD CC3 best Ecs Evoacs

ethene 0 0 0 1 7.98 8.62 8.40 8.51 8.37 7.80 8.01 7.64
E-butadiene 1 0 0 0 6.23 6.47 6.49 6.72 6.58 6.18 6.44 5.90
1 1 6 3 6.27 6.83 7.63 7.42 6.77 6.55 9.22 7.76

all-E-hexatriene 2 0 0 0 S.01 S$.31 541 5.72 5.58 S.10 5.47 4.96
2 1 6 2 5.20 542 6.67 6.61 S5.72 5.09 8.24 6.92

all-E-octatetraene 3 0 3 1 4.38 4.64 5.87 5.99 4.97 447 7.50 6.32
3 1 0 0 4.42 4.70 4.72 5.07 4.94 4.66 4.83 4.19

cyclopropene 4 0 1 0 6.36 6.76 6.96 6.96 6.90 6.76 7.34 6.21
4 1 0 1 7.45 7.06 7.17 7.24 7.10 7.06 6.92 6.59

cyclopentadiene S 0 0 0 5.27 S.51 5.69 5.87 573 S.5S 5.54 5.09
N 1 3 3 6.31 6.31 7.05 7.05 6.61 6.31 8.42 7.49

N 2 S 9 7.89 8.52 8.86 8.95 6.69 - 8.92 8.86

norbornadiene 6 0 0 0 5.28 5.34 5.57 5.80 S.64 5.34 5.67 S.18
6 1 1 1 6.20 6.11 6.37 6.69 6.49 6.11 7.25 6.50

6 2 3 S 6.48 7.32 7.65 7.87 7.64 - 8.04 7.70

6 3 4 4 7.36 7.44 7.66 7.87 7.71 - 8.27 7.57

benzene 7 1 0 0 6.30 6.45 6.68 6.74 6.68 6.54 6.10 4.99
naphthalene 8 0 1 1 4.03 4.24 4.45 4.41 4.27 4.24 5.24 4.70
8 1 0 0 4.56 4.77 4.96 S5.21 5.03 4.77 5.09 4.50

8 2 S 6 5.39 5.90 6.22 6.23 5.98 5.90 7.34 6.96

8 3 2 2 5.53 6.00 6.21 6.53 6.07 6.00 6.77 6.42

8 3 2 4 5.53 6.00 6.21 6.53 6.07 6.00 6.77 6.69

8 4 3 3 5.54 6.07 6.25 6.55 6.33 6.07 7.08 6.44

8 6 4 S 5.93 6.33 6.57 6.77 6.57 6.33 727 6.72

furan 9 0 0 0 6.04 6.43 6.75 6.80 6.60 6.32 6.53 6.26
9 1 2 1 6.16 6.52 6.87 6.89 6.62 6.57 8.16 6.57

9 2 7 7 7.66 8.22 8.78 8.83 8.53 8.13 9.15 8.97

pyrrole 10 0 2 1 5.92 6.31 6.61 6.61 6.40 6.37 7.65 6.43
10 1 0 2 6.00 6.33 6.83 6.87 6.71 6.57 6.78 6.70

10 2 8 8 7.46 8.17 8.44 8.44 8.17 791 8.89 8.63

imidazole 11 0 1 0 6.52 6.81 6.86 7.01 6.82 6.81 7.21 6.23
11 1 0 1 6.72 6.19 6.73 6.80 6.58 6.19 7.07 6.52

11 2 3 3 7.15 6.93 7.28 7.27 7.10 6.93 7.96 7.18

11 3 2 2 7.56 791 8.00 8.15 7.93 - 7.90 6.79

11 4 9 9 8.51 8.15 8.62 8.70 8.45 - 9.33 8.78

pyridine 12 0 1 1 4.84 5.02 5.32 5.27 S.1§ 4.85 6.19 5.48
12 1 0 0 491 S.14 S.12 5.25 5.0 4.59 6.13 5.44

12 2 6 6 5.17 5.47 5.39 5.73 5.50 S.11 8.61 8.08

12 3 2 3 6.42 6.39 6.88 6.94 6.85 6.26 6.51 6.68

12 4 4 S 7.23 7.46 7.72 7.94 7.70 7.18 8.42 7.99

12 S S 4 7.48 7.29 7.61 7.81 7.59 727 8.44 7.86

pyrazine 13 0 0 0 3.63 4.12 4.26 442 4.24 3.95 5.13 4.01
13 1 4 2 4.52 4.70 4.95 529 5.05 4.81 7.03 4.92

13 2 1 1 4.75 4.85 S.13 S5.14 5.02 4.64 5.98 4.76

13 3 3 3 5.17 5.68 5.92 6.02 5.74 5.56 6.70 5.3§

13 4 11 S 6.13 6.41 6.70 713 6.75 6.60 9.81 6.58

13 S 2 4 6.70 6.89 7.10 7.18 7.07 6.58 6.65 6.37

13 6 S 6 7.57 7.79 8.13 8.34 8.06 7.72 8.75 7.80

13 7 6 7 7.70 7.65 8.07 8.29 8.05 7.60 9.07 7.85

pyrimidine 14 0 0 0 3.81 4.44 4.49 4.70 4.50 4.55 5.87 4.88
14 1 2 1 4.12 4.81 4.84 5.12 4.93 491 6.56 5.52

14 2 1 2 4.93 S5.24 S5.51 5.49 5.36 S5.44 6.50 5.87

14 3 3 4 6.72 6.64 7.12 7.17 7.06 6.95 6.90 7.15

14 4 7 7 7.32 7.64 8.08 8.24 8.01 - 8.88 8.48

14 N 6 6 7.57 7.21 7.79 7.97 7.74 - 8.61 8.06

pyridazine 15 0 0 0 3.48 3.78 3.90 4.11 3.92 3.78 4.91 3.59
15 1 1 1 3.66 4.32 4.40 4.76 4.49 432 6.10 4.78

15 2 2 2 4.86 5.18 5.37 5.35 5.22 5.18 6.32 5.24

15 3 4 3 5.09 S.77 5.81 6.00 S5.74 5.77 7.29 S.61

15 4 6 S 5.80 6.52 6.40 6.70 6.41 - 843 7.00

15 S 3 4 6.61 6.31 7.00 7.09 6.93 - 6.56 6.34
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Table V. continued

name

s-tetrazine

formaldehyde

acetone

formamide

acetamide

propanamide

cytosine

thymine

uracil

adenine

no. mol

15
15
17
17
17
17
17
17
17
17
17
17
17
17
18
18
18
19
19
19
21
21
21
22
22
22
23
23
23
24
24
24
24
24
24
25
25
25
25
25
25
2S
25
26
26
26
26
26
26
26
26
27
27
27
27
27
27
27

no. S

0 N N A WY = O NN

e
W v = O

N A WD = O NNV WD = O NN OV Hh W = O N H WD - O HONMFOIN®EROIDNEMREOINRO

(e

no. CIS

S

—_
N O\ = O R WY = O N

— —
S L W N~ O DN O AN O PO DNWON~OO

0 LN A ND = O NN WD A RO NI ONW RS = O

—_
(=)

no. VOA-CIS

N O 00N W AN = O N

— =
(=]

0 NN W =N O NN WD A= O 000NN R = O N0 ONWN H O WO WNO W ONWOWNO K

—_
o

CASPT2

7.39
7.50
1.96
3.06
4.51
4.89
S.0S
5.28
5.48
5.99
6.37
7.13
7.54
7.94
3.91
9.09
9.77
4.18
9.10
9.16
5.61
7.41
10.50
5.54
7.21
10.08
548
7.28
9.95
4.39
S.00
6.53
5.36
6.16
6.74
4.39
4.88
S5.88
5.91
6.10
6.15
6.70
7.13
4.54
5.00
5.82
6.00
6.37
6.46
6.95
7.00
S.13
5.20
6.15
6.86
6.24
6.72
6.99

CASPT2

7.29
7.62
2.24
3.48
4.73
491
S.18
547
6.07
6.38
6.77
6.96
7.43
8.15
3.98
9.14
9.31
442
9.27
9.31
5.63
7.44
10.54
5.80
7.27
10.09
S5.72
7.20
9.94
4.68
S.12
5.54
5.54
6.40
6.98
4.94
5.06
6.15
6.38
6.52
6.86
7.43
7.43
4.90
5.23
6.15
6.27
6.97
6.75
7.28
742
5.20
5.30
S.21
5.97
6.35
6.64
6.88

CC2

7.57
7.90
2.47
3.67
5.10
5.20
5.53
5.50
6.32
6.91
6.70
7.60
7.75
8.65
4.09
9.35
10.34
4.52
9.29
9.74
5.76
8.15
11.24
5.77
7.66
10.71
5.78
7.56
10.33
4.80
5.13
S.01
5.71
6.65
6.94
4.94
5.39
6.46
6.33
6.80
6.73
7.18
7.71
491
5.52
6.43
6.73
6.26
6.96
7.12
7.66
5.28
5.42
5.27
591
6.58
6.93
7.49

CCSD

7.79
8.11
2.71
4.07
5.32
5.27
5.70
5.70
6.76
7.28
6.99
7.66
8.06
8.88
3.97
9.26
10.54
4.43
9.26
9.87
5.66
4.52
11.34
571
7.85
10.77
5.74
7.80
10.34
4.98
5.45
5.99
5.95
6.81
723
5.14
S5.60
6.78
6.57
7.0
7.67
7.87
7.90
S.11
5.70
6.76
7.68
6.50
7.19
7.74
7.81
5.37
S.61
5.58
6.19
6.83
7.17
7.72

CC3

7.55
7.82
2.53
3.79
4.97
S.12
5.34
546
6.23
6.87
6.67
745
7.79
8.51
3.95
9.18
10.45
4.40
9.17
9.65
5.65
8.27
10.93
5.69
7.67
10.50
S5.72
7.62
10.06

best

2.24
3.48
4.73
491
S.18
547

Ecis
8.32
8.67
3.52
5.67
6.08
6.24
6.56
6.65
9.36
9.79
8.68
6.88
8.58
9.53
4.46
9.62
9.67
5.10
9.77
9.69
6.42
8.82

10.57
6.58
9.02
9.86
6.62
9.00
9.82
6.07
6.85
7.21
7.45
7.99
9.04
6.23
6.31
8.24
7.67
8.65
8.88
8.58
9.59
6.22
6.49
8.36
7.61
7.82
8.76
9.33
9.47
6.23
6.37
7.05
7.50
7.69
8.16
8.37

Evoacis
7.43
7.83
1.83
3.61
4.53
4.76
4.72
5.12
6.12
6.77
6.97
6.52
7.28
8.35
2.93
9.04
9.05
3.78
9.31
8.89
5.28
6.84
8.37
5.26
7.07
7.65
5.20
7.22
7.73
5.26
5.39
5.59
6.21
7.30
7.82
4.80
5.88
7.17
6.12
7.45
8.09
8.15
8.63
4.81
6.03
7.16
6.09
7.13
7.58
8.83
8.48
5.76
5.89
5.80
6.78
7.28
7.55
8.01

“Benchmark molecules and reference data taken from ref 56. Best refers to the data which Thiel et al estimated to be the most reliable.
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reasons, the adiabatic states from an electronic structure
calculation may not be meaningful.

As an alternative to adiabatic states, diabatic states ({I=,), A
=1, 2, ..}) are electronic states with zero coupling to the
nuclear motion; and for many circumstances, diabatic states are
appropriate initial and final electronic states for chemical
dynamics (e.g, when Marcus theory>® applies). Even though
the constralnt of zero derivative coupling may be impossible to
achieve,** the notion of nearly diabatic states is Jery helpful in
quantum chemistry and has a very rich history.%>~¢’

Localized diabatization is one tool to generate nearly diabatic
states, and the motivation of localized diabatization is to
construct the electronic states that function as the initial and
final states of electron and energy transfer processes. In brief, to
generate a set of localized diabatic states, one rotates together a
set of adiabatic states, via a unitary transformation Uj,:

E) = ). 10)U,
J

All localized diabatization techniques are defined via a rotation
matrix U. Current available methods are generahzed Mulliken
Hush (GMH),*® fragment char rge difference (FCD),* fragment
energy difference (FED),70 72" constrained DFT (CDFT),”?
Boys localization,”* and ER localization.”” For a review of

(‘PélslaTabﬁa al¥ls) =t (q);ﬂla a,Ha a|®7 )t =

+8,0,t t)Ey 0t Eyy =StV Ey
btdfifk —8ut"tf,, abfzilfzﬁf
~5t"tf +o,tt0f St t)f,
+If —tt) ; —ttJf
Ut (dkllley +8," e (kNG o, (dillje) +

+8,t"t (bdl|ac)

"t (bkljc)

+t'tY(dil| aj)

+3,t" 7 (bk|| L)
+tf t J(bk||aj)

+t1t) (bl lc)

C. Table for Benchmark Molecules
In Table V, we list the individual excited state energies that
were calculated and averaged together to make up Figures 6

and 7. Twenty-eight molecules are included in the benchmark
set of Thiel et al.

D. Size-Consistency of VOA-CIS Method
In the text above, we claimed that the VOA-CIS algorithm
provided a size-consistent approach provided that the ground-
state was not included in the rediagonalized Hamiltonian. To
show this, we will now demonstrate explicitly that VOA-CIS-
O(n, m) (m = 1, 2) is size-consistent. In other words, suppose
that we are given two molecular fragments A and B that are
infinitely far away from each other in space. For an excitation
on fragment A, we must prove that E*°(A*) = E*(A*), where
“AB” signifies a calculation with both fragments included and
“A” signifies a calculation with only the one fragment.

To prove this statement, consider the AB calculation. Note
that there can be no charge transfer excited states between
fragments A and B because of their infinite separation. Let I and

+3;t"t(bk||la)
+t, tff<hd||cu)

+ ik |1)
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localized diabatization and the implicit assumptions therein, see
ref 74.

In this paper, section IV.A.3, we invoke Boys localization,
which is a computationally cheap generalization of the Cave/
Newton GMH approach.®® The physical motivation for the
Boys algorithm is that, for CT systems, charges are stabilized
and localized by a linear electric field from some solvent
molecule or other auxiliary field. In practice, just like Boys
localization of orbitals,””~”® Boys localized diabatization
suggests that diabatic charge centers should be as far apart as
possible, thereby maximizing the quantity below:

ioys (0) = fop, ({Ba1)
= ) (EAIE,) — (SHAIELP
AB

(28)

Boys localized diabatic states indeed have very small derivative
couplings.”>”®
B. Matrix Elements from Second Quantization

For completeness, we now give the formula for the doubles—
doubles block of the VOA-CIS algorithm. Equation 29 can be
used to derive eq 17 in the text above.

+t! It]l-’]EHF +3,5; fk "t _5ub5ijtldtl§] [%i
+uty c]f;

+ot"f

+f, {7,
St I GKIILY  +o,4™e 7 (dilll)

+8,t"'t,) (dk||al)

+t e (dkllja)y e billg) et (billja)

+'tI(illal)  +t"(dillla)

(29)

J be local excitations on A and B respectively. According to eq
S, we then find that #” (which is proportional to Y/) will be 0:
this follows because all interfragment two-electron integrals
must vanish. Y can be nonzero only if excitations I, ] are
located on the same fragment (say A), and the molecular
orbitals 4, i are also localized to that same fragment (A).
Now, for the m 1, 2 options, all doubly excited
wavefunctions have the form [¥7)= Zb aba {WLs). Thus,

all doubly excited configurations require that both excitations be
on the same fragment (again, A). Finally, note that in the
Hamiltonian to be rediagonalized, localized excitations on A
and B cannot couple to each other at all—either directly or
indirectly (because we have removed the ground-state). From
this logic, we may conclude that excited states on A will not mix
with excited states on B, and thus, we must have EAB(A*) =
E*(A*), ie. size-consistent excitation energies.

One final word is necessary about size-consistency. For the m
= 3 option, the doubly-excited configurations have the form:
PRy = —zbﬂgaZa}l‘Pl&s) In this case, one does allow for the
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possibility of excitations on both fragments, since CIS state K
could be localized to fragment B, while CIS states I, ] could be
localized to fragment A. Nevertheless, it is easy enough to show
that, after diagonalizing the Hamiltonian, we will find three
distinct and nonmixing classes of excited states: those with
excitations exclusively on A, those with excitations exclusively
on B, and those with excitations on both A and B. The first two
sets will have size-consistent energies and be meaningful. This
situation is the exact scenario described in section IL.D above.

E. Connection to Multireference Configuration Interaction
and Neese’s Spectroscopy Orientied Configuration
Interaction

In section ILD above, we discussed the limitations of bare
CISD. Of course, there are many effective multi-reference CI
(MRCI) approaches towards generating excited states that
outperform CISD and generate strong absolute and relative
excitation energies.** While such MRCI methods are not post-
CIS approaches, in general MRCI algorithms are very powerful
techniques (though often expensive). Recently, Neese has
proposed a spectroscopy oriented configuration interaction
approach (SORCI) to excited states built on top of a CASSCF
calculation for treating large molecules. At the heart of the
SORCI algorithm, working in a meaningful set of average
natural orbitals, the SORCI algorithm prescribes: (i) one
perform a CASSCF calculation, (ii) one truncates the CASSCF
wavefunctions to a smaller set of reference configurations, (iii)
one generates excitations into a predefined strongly interacting
subspace, and (iv) finally one rediagonalizes the Hamiltonian.
(A perturbative correction for dynamic correlation is also
added.) Using SORCI, one can generate quite accurate excited
states for a very broad variety of molecules, small and large, for
small enough configuration interactions. Nevertheless, the
caveat for SORCI is that one must first choose an active
space for CASSCF and second invoke several thresholds for
choosing average natural orbitals, truncating the relevant
reference states, and defining a strongly interacting subspace.
For these reasons, the method is not “black box.”

In the end, Neese’s SORCI approach can not be mapped
onto the model we propose in this manuscript (if we replace a
CASSCEF calculation by a CIS calculation). The reasoning is as
follows. The VOA-CIS approach generates a set of doubly
excited configurations in the form of a linear combination via
perturbation theory. By contrast, SORCI performs no such
contraction; instead, SORCI uses one threshold to generate a
set of truncated reference states and a second threshold to
generate a strongly interacting subspace. Thus, SORCI requires
the diagonalization of a matrix of dynamic size (depending on
thresholds); whereas, VOA-CIS requires the diagonalization of
a matrix of static size. In general, for reasonable thresholds, we
can expect that VOA-CIS will be less accurate but also
significantly less expensive than a typical SORCI calculation.
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