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Communication: An inexpensive, variational, almost black-box, almost
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Xinle Liu, Qi Ou, Ethan Alguire, and Joseph E. Subotnika)

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 18 April 2013; accepted 22 May 2013; published online 14 June 2013)

Configuration interaction singles (CIS) describe excited electronic states only qualitatively and im-
provements are imperative as a means of recovering chemical accuracy. In particular, variational
improvements would be ideal to account for state crossings and electronic relaxation. To accom-
plish such an objective, in this communication we present a new suite of algorithms, abbreviated
VOO-CIS for variationally orbital optimized CIS. We show below that VOO-CIS yields a uniform
improvement to CIS, rebalancing the energies of CT states versus non-CT states within the same
framework. Furthermore, VOO-CIS finds energetic corrections for CT states that are even larger
than those predicted by CIS(D). The computational cost of VOO-CIS depends strongly on the num-
ber of excited states requested (n), but otherwise should be proportional to the cost of CIS itself.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4809571]

I. INTRODUCTION

CIS Inspired Approaches. Configuration interaction
singles (CIS) is a size-consistent, variational approach posit-
ing that an excited state wavefunction (labeled I) is a lin-
ear combination of single excitations: |!I

CIS〉 =
∑

ai t
aI
i |"a

i 〉.
The amplitudes {taI

i } are found by diagonalizing the resulting
Hamiltonian.

When excited states have “similar character”—so that
their correlation energies cancel— CIS can predict relative
excitation energies reasonably well.1 However, when excited
states have different character, CIS performs poorly and the
ordering of the excited states is completely unreliable. In par-
ticular, CIS fails miserably when it comes to the relative ener-
gies of non-CT and CT states, consistently overestimating CT
energies by roughly 1–2 eV.2

To improve upon CIS with wavefunctions, CIS(D)3 is
a good approach, introducing electron correlation by includ-
ing perturbations from all doubles and a subset of the triples.
(Another option is CIS(2).4) CIS(D) almost always outper-
forms CIS, sometimes reducing the excitation energy errors
to a few tenths of an eV.5 However, because CIS(D) is per-
turbative, the biggest limitation of the method is that one can-
not handle crossings or near-degeneracies accurately. Thus,
CIS(D) does not yield reliable excited states in the regions
most important to electronic relaxation and analytical gradi-
ents are not available. Finally, there is a quasi-degenerate im-
provement to CIS(D), CIS(D0),6 but the latter is quite expen-
sive and requires the iterative diagonalization of a perturbative
response matrix (without being variational); recent progress
has focused on the scaled-opposite-spin (SOS-CIS(D0)) ap-
proximation and gradient.7, 8

a)Electronic mail: subotnik@sas.upenn.edu

Orbital Optimization for Charge-Transfer States. CT
states are ubiquitous in excited state chemistry. From our
point of view, n → π∗ states count as CT states in small
organics, given that the donor lone pair (n) usually belongs
to an oxygen, and the acceptor π∗ orbital can be one or two
bonds away on carbon atoms. If we want to use wavefunc-
tion methods for excited states, the CIS imbalance between
CT and non-CT states must be corrected.

In a recent paper, we showed that the CT problem in CIS
can be effectively overcome by simple orbital optimization.9

In fact, we demonstrated that a perturbative approach for
reoptimizing orbitals (which we called OO-CIS)9 yielded a
large negative energy correction for CT states which was com-
parable to CIS(D). Nevertheless perturbation theory is never
suitable near a crossing point. Moreover, we have found em-
pirically that OO-CIS (even more so than CIS(D)) does not
give a big enough correction to CT states.10

To go beyond our earlier perturbative approach, we now
present a new and variational extension of OO-CIS, labeled
VOO-CIS, rooted in the concept of orbital optimization.
VOO-CIS predicts accurate relative energies between CT
states and non-CT ones, and because the latter is variational,
it can effectively address the electronic structure problem at a
crossing point.

Notation. Henceforward, ijkl (abcd) denote occupied
(virtual) orbitals. IJKL are the indices for excited states, while
G is reserved for ground state. Ĩ J̃ K̃L̃ are indices for either a
ground or excited state. When we write VOO-CIS-C(n, m), n
denotes the number of excited CIS states included and must
be less than or equal to the size of the CIS-subspace Nov . m is
an indication of how many doubles are involved in the basis
wavefunctions and can only be {1, 2, 3}, i.e., the number of
doubles from excited states is nm. C can be any of the three
characters {O, G, X}. See Table I for detailed meaning of m
and C.

0021-9606/2013/138(22)/221105/4/$30.00 © 2013 AIP Publishing LLC138, 221105-1

http://dx.doi.org/10.1063/1.4809571
http://dx.doi.org/10.1063/1.4809571
http://dx.doi.org/10.1063/1.4809571
http://dx.doi.org/10.1063/1.4809571
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4809571&domain=pdf&date_stamp=2013-06-14


221105-2 Liu et al. J. Chem. Phys. 138, 221105 (2013)

TABLE I. For each VOO-CIS-C(n, m) option, here are the additional sub-
spaces included along with the CIS states {|!I

CIS〉}. I, J, K, L = {1, 2 · · · n}.

C

m Oa G X

1 |!JJJ〉 |"HF〉, |!JJJ〉 |"HF〉, |!JJJ〉
2 |!JKK〉 |"HF〉, |!JKK〉 |"HF〉, |!JKK〉, |!GKK〉
3 |!JKL〉 |"HF〉, |!JKL〉 |"HF〉, |!JKL〉, |!GKL〉
aStrictly speaking, only the O-option is size-consistent.

II. METHODOLOGY: DOUBLES CORRECTIONS
VIA ORBITAL RELAXATION

Basis. The basic premise of VOO-CIS is to treat a set
of CIS wavefunctions |!I

CIS〉 as zeroth order wavefunctions
|!(0)〉. Next, we generate first order wavefunction corrections
|!(1)〉 by projecting the effect of orbital optimization onto the
space of double excitations. Finally, we rediagonalize the en-
tire Hamiltonian in the basis {|!(0)〉, |!(1)〉}.

With this in mind, we are led to the following doubly ex-
cited configurations, where the ground-state |"HF〉 can either
be included or not,

|!JKL〉 = −
∑

ai

〈
!J

CIS

∣∣H
∣∣a†

aai!
K
CIS

〉

εa − εi + EK
CIS − EJ

CIS

a†
aai

∣∣!L
CIS

〉

≡ −
∑

ai

Y JK
ai

εa − εi + EK
CIS − EJ

CIS

a†
aai

∣∣!L
CIS

〉

≡ +
∑

ai

θJK
ai a†

aai

∣∣!L
CIS

〉
, (1)

|!GKL〉 = −
∑

ai

〈"HF|H
∣∣a†

aai!
K
CIS

〉

εa − εi + EK
CIS − EHF

a†
aai

∣∣!L
CIS

〉

≡ −
∑

ai

YGK
ai

εa − εi + EK
CIS − EHF

a†
aai

∣∣!L
CIS

〉

≡ +
∑

ai

θGK
ai a†

aai

∣∣!L
CIS

〉
. (2)

Here, in the basis of molecular orbitals, the Y and θ ma-
trices are

Y IJ
ai ≡

∑

bcjk

tcIk

〈
"c

k

∣∣H a†
aai

∣∣"b
j

〉
tbJ
j

=
∑

bcj

(
t cIi tbJ

j 〈cj ||ab〉 + t cIj tbJ
j 〈ci||ba〉

)

+
∑

bjk

(
taI
k tbJ

j 〈ij ||bk〉 + tbI
k tbJ

j 〈ij ||ka〉
)
, (3)

YGJ
ai ≡

∑

bj

〈"HF|H a†
aai

∣∣"b
j

〉
tbJ
j =

∑

bj

tbJ
j 〈ij ||ab〉,

θ Ĩ J
ai ≡ − Y ĨJ

ai

εa − εi + EJ − EĨ
.

The VOO-CIS algorithm proposes that we pick a subset
of the {|! J̃KL〉} vectors listed above (Eqs. (1) and (2))

as |!(1)〉. Broadly speaking, we have three major choices
for subspace size: (m = 1) corresponds to state specific
orbital optimization by first-order perturbation theory: |!I

CIS〉
→ |!I

CIS〉 + cIII |!III 〉. (m = 2) corresponds to both
intrastate and interstate orbital relaxation: |!I

CIS〉
→ |!I

CIS〉 +
∑

J cIJJ |!IJJ 〉. (m = 3) corresponds to
|!I

CIS〉 → |!I
CIS〉 +

∑
JK cIJK |!IJK〉, which is unphysical

but does ensure stability at a point of conical intersection
between CIS states. Finally, before finishing, we must almost
decide whether or not to include the ground state, and if so
how. In Table I, we list all the possible choices of the basis
set.

Hamiltonian. Our next task is to construct the Hamil-
tonian H matrix. Notice that the maximum dimension is
D = 1 + n + n3 + n2, where 1 is the ground state and n is
the number of excited states we desire. More specifically, n
is the dimension for the |!(0)〉 vector space, while n3 and
n2 are, respectively, the dimensions for the {|!JKL〉} and
{|!GKL〉} subspaces of the |!(1)〉 vector space.

The H matrix is naturally divided into 3 parts:

〈! Ĩ |H |! J̃ 〉= δĨ J̃ EĨ ,

〈! Ĩ |H |! J̃KL〉=
∑

ai

〈! Ĩ |H
∣∣θ J̃K

ai a†
aai!

L
〉

=
∑

ai

θ J̃K
ai Y ĨL

ai , (4)

〈! Ĩ JK |H |! Ĩ ′J ′K ′ 〉=
∑

abij

〈(
!K θ Ĩ J

bj a
†
j ab

)∣∣H
∣∣(θ Ĩ ′J ′

ai a†
aai !K ′)〉

=
∑

abij

θ Ĩ J
bj θ Ĩ ′J ′

ai 〈!K |a†
j abHa†

aai |!K ′ 〉.

The last matrix element is easily evaluated via second-
quantization.

Because our basis functions are neither normalized nor
orthogonal, we must diagonalize the H matrix together with
the overlap S matrix: Hv = SvE. Basis functions used in the
doubles space can be linearly dependent, so when diagonaliz-
ing the S matrix, we use a threshold of 10−5 for eigenvalues to
eliminate linear dependence. In practice, if we choose n = 10
excited states, we need to diagonalize a matrix at most (when
m = 3) on the order of 1000 by 1000.

Finally, note that the eigenfunctions of the Hamiltonian
in Eq. (4) will not couple together non-interacting subsys-
tems, provided the ground state is not included. Thus, the
VOO-CIS-O option is completely size-consistent.

III. RESULTS

The VOO-CIS algorithm was implemented using a
developers’ version of the Q-Chem software package.11

In the following calculations, the basis set was 6-
31G* together with the rimp2-cc-pvdz auxiliary basis set.
We present results for two molecules: 2-(4-(propan-2-
ylidene)cyclohexylidene)malononitril (PYCM, shown in the
inset of Fig. 1(f)) and twisted ethylene (C2H4).

PYCM. Experimentally, the absorption spectrum of
PYCM shows a strong non-CT band at 5.4 eV and a CT
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FIG. 1. (a)–(d) Plot of the VOO-CIS energy correction versus the CIS(D)
energy correction, with different VOO-CIS options for m and C. Data points
with | (µrel| bigger than 4 a.u. are colored red (for CT states); non-CT states are
colored blue. (e) A histogram of energy corrections from both CIS(D) and
VOO-CIS-G(12, 2). (f) Plot of the VOO-CIS-G(12, 2) | (µrel| versus | (µCIS

rel |.
The inset is the PYCM structure. All the green lines are y = x for reference.
Note that all VOO-CIS combinations find a clear separation between CT and
non-CT states, while CIS(D) does not.

band at 4.6 eV in hexane.12 At the ground-state geometry,
CIS incorrectly predicts that the CT state is the 7th state,
while CIS(D) correctly predicts the CT state is the first excited
state. Surprisingly (and incorrectly), SOS-CIS(D0)7 finds two
(mixed) low-lying excited states with large dipole moments.

In this communication, we will focus exclusively on
the potential energy surface near the ground-state geome-
try. Previously,2 we have generated 500 geometries from a
ground-state classical trajectory, and we consider the first 12
excited states, each with roughly 1 CT state apiece, for a total
of 6000 data points. In this region of configuration space, with
no torsional motion, we do not expect to see any crossings
between the CT and non-CT state.13 Strangely, however, CIS
does predicts such crossings. When faced with such an unex-
pected crossing, CIS(D) encounters adiabatic CIS states that
are incorrectly mixtures of CT and non-CT states; as such,
CIS(D) is forced to give a correction lying anywhere from big
to small. As such, according to CIS(D), the CT state is not
consistently the lowest excited state.

By contrast, VOO-CIS does not predict such a crossing.
In Figs. 1(a)–1(d), we plot the VOO-CIS energy correction
versus CIS(D) energy correction for different combinations
of parameters in VOO-CIS-C(n, m). The red dots are from
CT states, while blue dots are from non-CT ones. To construct
'EVOO-CIS, we mapped each CIS eigenstate to the VOO-CIS

eigenstate with maximum overlap. The data are striking: un-
like CIS(D), VOO-CIS always finds a sharp boundary for 'E
between non-CT and CT states and does not mix CT and
non-CT states. The m = 2 and m = 3 corrections give an
even more consistent correction than m = 1. (By comparing
Figs. 1(c) with 1(b), we see that adding in the ground-state can
shift all the excitation energies up.) Our data is summarized in
Fig. 1(e) which shows a histogram of energy corrections for
CIS(D) and VOO-CIS-G(12, 2). The former has a wide and
continuous distribution, while the latter yields a bimodal dis-
tribution – with one sharp peak for CT states (≈−2 eV) and
another for non-CT ones (≈0 eV).

Turning to dipole moments, in Fig. 1(f), we plot the
relative dipole moments of the excited states, | (µrel| = | (µex

− (µgs|, comparing VOO-CIS-G(12, 2) with CIS. Whereas
CIS predicts | (µrel| values that change continuously from non-
CT through weak CT states to strong CT states, again VOO-
CIS predicts a completely bimodal distribution of dipole mo-
ments: there are CT states with large dipole moments and
there are non-CT states with small dipole moments. As such,
VOO-CIS yields an extremely intuitive picture of the valence
excited states.

In the end, this PYCM data suggests that, by rediagonal-
izing the Hamiltonian matrix instead of applying perturbation
theory, VOO-CIS is not limited by the failure of CIS for treat-
ing CT states.

Twisted ethylene. Twisted ethylene is a paradigmatic ex-
ample of an avoided crossing:14 at 90◦, the π and π∗ orbitals
come together in energy. As a result there are three low-lying
singlet states, with roughly π2, ππ∗, and (π∗)2 character.15

To assess the VOO-CIS approach, we plot in Fig. 2, the rel-
ative energy of the first few excited states along the torsional
angle τ from 60◦ to 120◦, with geometries from Casanova and
Head-Gordon.16

In Fig. 2(a)–2(c), we plot low-lying excitation energies
from VOO-CIS-G(n, 2) with n = 5, 6, 7, and 14. Note how
a new excited state appears in our model Hamiltonian as n
goes from 5 to 7; this is the doubly excited (π∗)2 state and
its appearance suggests that VOO-CIS can predict some dou-
bly excited states (though perhaps only serendipitously). Ob-
serve also that increasing the basis beyond n = 7 yields no
big changes (see n = 14). Altogether, this implies that, for an
accurate description of the first n′ states, the parameter n in
VOO-CIS-C(n, m) does not have to be much bigger than n′.

In Fig. 2(d), we plot VOO-CIS-X(14, 3) data versus SF-
XCIS16 data (shown in red). SF-XCIS effectively introduces
a π -π∗ active space and should be extremely accurate for this
problem. The figure suggests that VOO-CIS finds accurate
relative energies among the excited states (although VOO-
CIS overestimates the ground states by roughly 0.5 eV com-
pared to SF-XCIS). In Fig. 2(e), we plot the CIS/EHF and
CIS(D)/MP2 data, which totally miss the doubly excited state
and ignore coupling with the ground-state. (The SOS-CIS(D0)
results closely follow the CIS(D) energies.) From this data,
we tentatively conclude that VOO-CIS is stable near avoided
crossings, with the added possibility of doubly-excited states.

In Fig. 2(f), we plot the dependence of VOO-CIS-X(n,
3) energies upon the number of states n (for the τ = 80◦ ge-
ometry). S0 is the ground state, while Si(i = 1, 2) is the ith
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FIG. 2. (a)–(d) Plot of VOO-CIS energies for ethylene along the torsional
angle τ , with different VOO-CIS options. (d) The SF-XCIS16 active-space
result (in red). (e) CIS/EHF and CIS(D)/MP2 data. (f) The VOO-CIS-X(n, 3)
energy as a function of n at τ = 80◦, compared with CISD data (x’s). All
energies are relative to the ground state at τ = 60◦ in (d) (black solid dot).
Note that VOO-CIS is able to find the low-lying doubly excited state.

excited state. On the far right, we plot CISD data (which is
equivalent to VOO-CIS-X(∞, 3)). Note that (i) VOO-CIS en-
ergies does not depend strongly on n and (ii) VOO-CIS ex-
cited state energies are close to CISD energies for n = 15,
but the ground-state energy is still far away. This is likely
a feature of our method, because CISD is known to wildly
overestimate vertical excitation energies (by over-stabilizing
the ground state17). For instance, compare the CISD data
(Eex

1 ≡ ES1 − ES0 = 7.7 eV) with the SF-XCIS data (which
includes triples, Eex

1 = 3.4 eV) and our VOO-CIS-X(14,3)
data (Eex

1 = 3.2 eV). Altogether, Fig. 2(f) suggests that we
can get reasonable potential energy surface for n not too big
or too small.

IV. CONCLUSIONS AND CAVEATS

VOO-CIS-C(n, m) is a variational, almost black-box ap-
proach for solving excited state problems without choosing
active space orbitals. The only parameters in our approach are
the number of CIS states n and the number of doubles added
∼nm. Thus far, there appears to be little dependence on n, pro-
vided n is not too small. This is crucial because the cost goes
up quickly with n. In our experience, m = 2, 3 convincingly
outperforms m = 1 when treating state crossings. In all cases,
VOO-CIS gives a strong energy correction for CT states, far
stronger than is found with perturbation theory. Thus far, the

strongest drawback to VOO-CIS is that the method appears to
underestimate Rydberg excitation energies, though this may
not be crucial for photochemistry18 especially in the con-
densed phase.19

Intensive benchmarking of VOO-CIS is crucial and will
be reported shortly. At worst, VOO-CIS is a cheap algorithm
to generate approximate CISD energies from an expansion in
the doubles space. At best, VOO-CIS is an inexpensive ap-
proach for valence CISD energy calculations – where static
and dynamic correlation are balanced and vertical excitation
energies are not exaggerated. For these reasons, we are cur-
rently working on an optimal VOO-CIS algorithm. Because
VOO-CIS requires only O(n2NoNv) memory (e.g., to repre-
sent θ Ĩ J

ai ) and the number of important excited states is often
small (e.g., n ≤ 10), a VOO-CIS algorithm should be highly
parallelizable and quite affordable for big molecules. If such
an algorithm can be implemented, VOO-CIS methods will
have a strong impact on excited state calculations, where new
methods are sorely needed.
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