$$
\newcommand{\bra}[1]{\left\langle#1\right|}
\newcommand{\ket}[1]{\left|#1\right\rangle}
\newcommand{\ketbra}[2]{\left|#1\right\rangle\left\langle#2\right|}
\newcommand{\bracket}[2]{\left\langle #1 \middle| #2 \right\rangle}
\newcommand{\matrixel}[3]{\left\langle #1 \middle| #2 \middle| #3 \right\rangle}
\newcommand{\avg}[1]{\left\langle #1 \right\rangle}
\newcommand{\bm}[1]{\boldsymbol{#1}}
\newcommand{\bh}[1]{\boldsymbol{\hat{#1}}}
\newcommand{\bv}[1]{\boldsymbol{\vec{#1}}}
$$
Constants
Planck constant \(h = 6.62607004 \times 10^{-34} J \cdot s\)
Boltzmann constant \(k_B = 1.38064852 \times 10^{-23} J \cdot K^{-1}\)
Avogadro's number \(N_A = 6.0221409 \times 10^{23} mol^{-1} \)
Speed of light \(c = 2.99792458 \times 10^{8} m \cdot s^{-1}\)
Bohr radius \(a_0 = 5.29177211 \times 10^{-11} m \)
Charge of electron \(e = 1.60217662 \times 10^{-19} C \)
Mass of electron \(m_e = 9.10938356 \times 10^{-31} kg \)
Mass of proton \(m_p = 1.6726219 \times 10^{-27} kg \)
Unit Conversion
Energy Converter
Formula
Vector and Matrix
Vector calculus
Wikipedia: Vector Calculus Identities
$$
\bm{\nabla} \cdot (\bm{\nabla} \times \bm{v}) = 0
\\
\bm{\nabla} \times (\bm{\nabla} \phi) = \bm{0}
\\
\bm{\nabla} \times (\bm{\nabla} \times \bm{v}) = \bm{\nabla}(\bm{\nabla} \cdot \bm{v}) - \bm{\nabla}^2\bm{v}
\\
\bm{\nabla} \cdot (\bm{\nabla} \phi) = \bm{\nabla}^2 \phi
\\
\\
\bm{\nabla} \cdot (\bm{v} \times \bm{w}) =
(\bm{\nabla} \times \bm{v}) \cdot \bm{w} -
\bm{v} \cdot(\bm{\nabla} \times \bm{w})
\\
\bm{\nabla} \times (\bm{v} \times \bm{w}) =
\bm{v} (\bm{\nabla} \cdot \bm{w}) -
\bm{w} (\bm{\nabla} \cdot \bm{v}) +
(\bm{w} \cdot \bm{\nabla}) \bm{v} -
(\bm{v} \cdot \bm{\nabla}) \bm{w}
\\
\bm{u} \cdot (\bm{v} \times \bm{w}) =
\bm{v} \cdot (\bm{w} \times \bm{u}) =
\bm{w} \cdot (\bm{u} \times \bm{v})
\\
\bm{u} \times (\bm{v} \times \bm{w}) =
(\bm{u} \cdot \bm{w}) \bm{v} -
(\bm{u} \cdot \bm{v}) \bm{w}
\\
\bm{u} \times (\bm{v} \times \bm{w}) +
\bm{v} \times (\bm{w} \times \bm{u}) +
\bm{w} \times (\bm{u} \times \bm{v}) = 0
\\
$$
Matrix identity
Wikipedia: Matrix Exponential
When [A,B] is a number,
$$
e^{A+B} = e^A e^B e^{-\frac{1}{2} [A,B]} \\
$$
Function and Integration
Genearal function
Wikipedia: Translation Operator
$$
e^{\lambda\frac{\partial}{\partial x}} f(x) = f(x + \lambda) \\
$$
Delta function
Wikipedia: Fourier Transform Table
$$
\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx}dk \\
$$
Gaussian function
Wikipedia: Exponential Integration Table
$$
\int_{-\infty}^{\infty} e^{-Ax^2+Bx}dx = \sqrt{\frac{\pi}{A}}e^{B^2/4A} \text{ , } A \gt 0 \\
$$
Derivative Coupling
$$
\bm{d}_{jk} \equiv \matrixel{j}{\bm{\nabla}}{k} = \frac{\matrixel{j}{\bm{\nabla}H}{k}}{E_k - E_j} \\
$$
Maxwell's Equations
$$
\bm{\nabla} \cdot \bm{E} = \frac{\rho}{\varepsilon_0} \\
\bm{\nabla} \cdot \bm{B} = 0 \\
\bm{\nabla} \times \bm{E} = -\frac{\partial \bm{B}}{\partial t} \\
\bm{\nabla} \times \bm{B} = \mu_0 \left(\bm{J} + \varepsilon_0 \frac{\partial \bm{E}}{\partial t}\right) \\
$$
Second Quantization
Wikipedia: Quantum Harmonic Oscillator
$$
\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 = \hbar\omega\left(\hat{a}^\dagger\hat{a} + \frac{1}{2}\right)\\
\hat{a} = \frac{1}{\sqrt{2}}\left[\sqrt{\frac{m\omega}{\hbar}}\hat{x} + i\frac{\hat{p}}{\sqrt{\hbar m\omega}}\right] \text{ , }
\hat{a}^{\dagger} = \frac{1}{\sqrt{2}}\left[\sqrt{\frac{m\omega}{\hbar}}\hat{x} - i\frac{\hat{p}}{\sqrt{\hbar m\omega}}\right] \\
\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}\left(\hat{a} + \hat{a}^{\dagger}\right) \text{ , }
\hat{p} = -i\sqrt{\frac{\hbar m\omega}{2}}\left(\hat{a} - \hat{a}^{\dagger}\right) \\
[\hat{x}, \hat{p}] = i\hbar \text{ , } [\hat{a}, \hat{a}^{\dagger}] = 1 \\
\hat{a}\ket{n} = \sqrt{n} \ket{n-1} \text{ , } \hat{a}^{\dagger} \ket{n} = \sqrt{n+1} \ket{n+1} \\
\hat{a}(t) = \hat{a}e^{-i\omega t} \text{ , } \hat{a}^{\dagger}(t) = \hat{a}^{\dagger}e^{i\omega t} \\
$$
Marcus Rate
$$
k_{1 \leftarrow 2} = \frac{|V_{12}|^2}{\hbar} \sqrt{\frac{\pi}{k_BTE_r}} e^{-(E_{21} - E_r)^2 / 4k_BTE_r} \\
$$
Order of Magnitude
Rates
$$
\text{ benzophenone intersystem crossing } \frac{1}{k_{ISC}} \approx 10ps \text{ (Tamai, N.; Asahi, T.; Masuhara, H. Chem. Phys. Lett. 1992, 198, 413−418) } \\
\text{ benzophenone phosphorescence } \frac{1}{k_{phos}} \approx 0.712 ms \text{ (Biron, M.; Longin, P. Chem. Phys. Lett. 1985, 116 (2−3), 250−253) }
$$